Engel Bundgaard (yogurtrecord1)
Deferral and concordance rates were compared to final histopathological diagnoses. Results The deferral rate for IO teleneuropathology was 26% and conventional glass slide 24.24% (P = 0.58). The concordance rate for teleneuropathology was 93.94%, which was slightly higher than 89.09% for conventional glass slides (P = 0.047). Conclusion The new hybrid robotic device for performing IO teleneuropathology interpretations at our institution was as effective as conventional glass slide interpretation. While we did observe a noticeable change in the deferral rate compared to prior years, we did appreciate the marked improvement of the concordance rate using this new hybrid scanner.Pathology departments must rise to new staffing challenges caused by the coronavirus disease-19 pandemic and may need to work more flexibly for the foreseeable future. In light of this, many pathologists and departments are considering the merits of remote or home reporting of digital cases. While some individuals have experience of this, little work has been done to determine optimum conditions for home reporting, including technical and training considerations. In this publication produced in response to the pandemic, we provide information regarding risk assessment of home reporting of digital slides, summarize available information on specifications for home reporting computing equipment, and share access to a novel point-of-use quality assurance tool for assessing the suitability of home reporting screens for digital slide diagnosis. We hope this study provides a useful starting point and some practical guidance in a difficult time. This study forms the basis of the guidance issued by the Royal College of Pathologists, available at https//.[This corrects the article on p. 15 in vol. 5, PMID 24843826.].Background Automated pathology techniques for detecting cervical cancer at the premalignant stage have advantages for women in areas with limited medical resources. Methods This article presents EpithNet, a deep learning approach for the critical step of automated epithelium segmentation in digitized cervical histology images. EpithNet employs three regression networks of varying dimensions of image input blocks (patches) surrounding a given pixel, with all blocks at a fixed resolution, using varying network depth. Results The proposed model was evaluated on 311 digitized histology epithelial images and the results indicate that the technique maximizes region-based information to improve pixel-wise probability estimates. EpithNet-mc model, formed by intermediate concatenation of the convolutional layers of the three models, was observed to achieve 94% Jaccard index (intersection over union) which is 26.4% higher than the benchmark model. Conclusions EpithNet yields better epithelial segmentation results than state-of-the-art benchmark methods.Background Cervical screening could potentially be improved by better stratifying individual risk for the development of cervical cancer or precancer, possibly even allowing follow-up of individual patients differently than proposed under current guidelines that focus primarily on recent screening test results. We explore the use of a Bayesian decision science model to quantitatively stratify individual risk for the development of cervical squamous neoplasia. Materials and methods We previously developed a dynamic multivariate Bayesian network model that uses cervical screening and histopathologic data collected over 13 years in our system to quantitatively estimate the risk of individuals for the development of cervical precancer or invasive cervical cancer. The database includes 1,126,048 liquid-based cytology test results belonging to 389,929 women. From-the-vial, high risk human papilloma virus (HPV) test results and follow-up gynecological surgical procedures were available on 33.6% and 12% of the