Saleh Deal (waterdrug13)

The prognosis of patients with hypoplastic myelodysplastic syndrome (hMDS) after receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. This study aimed to evaluate the outcomes of patients with hMDS after allo-HSCT. Between September 2013 and October 2019, a total of 20 consecutive patients with hMDS and 1 patient with clonal cytopenia of undermined significance (CCUS) who underwent allo-HSCT, which included procedures with 9 matched sibling donors, 2 matched unrelated donors, 4 mismatched unrelated donors and 6 haploidentical donors, were enrolled in this study. The median time for myeloid engraftment was 11 days (range 9-17 days), and that for platelet engraftment was 10 days (range 7-17 days). The cumulative incidence (CI) of myeloid and platelet recovery was 95.2 ± 6.0% and 90.5 ± 7.3%, respectively. The CI rates were 40.0 ± 11.3% for grades II-III acute graft-versus-host disease (GVHD), 36.8 ± 11.5% for chronic GVHD and 23.8 ± 9.6% for nonrelapse mortality. No patients experienced relapse. Sixteen surviving patients were followed up for a median of 1113 days (range 110-2305 days), and the overall survival and relapse-free survival rates were both 72.7 ± 10.6%. This limited retrospective analysis suggests that patients with hMDS had a favorable survival after allo-HSCT.The number of patients undergoing joint replacement surgery has progressively increased worldwide due to world population ageing. In the Unites States, for example, the prevalence of hip and knee replacements has increased more than 6 and 10 times, respectively, since 1980. Despite advances in orthopaedic implant research, including the development of novel implantable biomaterials, failures are still observed due to inadequate biomechanical compliance at the bone-implant interface. This comprises static and dynamic mechanical mismatch between the bone and the implant surface. The importance and robustness of biomechanical cues for controlling osteogenic differentiation of mesenchymal stem cells (MSC) have been highlighted in recent studies. However, in the context of bone regenerative medicine, it remains elusive how mechanobiological signals controlling MSC osteogenic differentiation dynamics are modulated in their interaction with the bone and with implants. In this review, we highlight recent technological advances aiming to improve host bone-implant interactions based on the osteogenic and mechanoresponsive potential of MSC, in the context of joint replacement surgery. First, we discuss the extracellular and intracellular mechanical forces underlying proper receptivity and stimulation of physiological MSC differentiation and linked osteogenic activity. Second, we provide a critical overview on how this knowledge can be integrated towards the development of biomaterials for improved bone-implant interfaces. Third, we discuss cross-disciplinarily which contributes to the next generation design of novel pro-active orthopaedic implants and their implantation success. Graphical Abstract.Stem cell based therapy are now commonly applied in human and veterinary medical practice especially in orthopaedics. Mesenchymal stromal stem cells isolated from adipose tissue (ASC) are first choice option due to relatively non-invasive and safe procedure of tissue harvesting. However, ASC therapeutic potential strongly rely on patients general health condition, age and life-style. For that reason, to enhance therapeutic potential of cells, they are modified in vitro using different approaches. Previous studies have shown, that ASC treated with resveratrol, herein called SIRT+, are characterised by decreased senescence, increased proliferation rate and improved clinical outcome in autologous therapies. Herein, SIRT + cells in alginate hydrogel were applied to 5 years old warm breed mare was clinically evaluated due to the left hind lameness due to subchondral bone cyst. The therapeutic effect was assessed by the analysis of lameness sco