Hoppe Morin (voyageyam82)

The data is publicly available for further research at https//data.mendeley.com/datasets/3y55vgckg6/1https//data.mendeley.com/datasets/3y55vgckg6/1.Coronavirus genomic infection-2019 (COVID-19) has been announced as a serious health emergency arising international awareness due to its spread to 201 countries at present. In the month of April of the year 2020, it has certainly taken the pandemic outbreak of approximately 11,16,643 infections confirmed leading to around 59,170 deaths have been recorded world-over. This article studies multiple countries-based pandemic spread for the development of the COVID-19 originated in the China. This paper focuses on forecasting via real-time responses data to inherit an idea about the increase and maximum number of virus-infected cases for the various regions. In addition, it will help to understand the panic that surrounds this nCoV-19 for some intensely affecting states possessing different important demographic characteristics that would be affecting the disease characteristics. This study aims at developing soft-computing hybrid models for calculating the transmissibility of this genome viral. The analysis aids free. Estimates of the awaited outburst for regions in this study are India, China and the USA that will help in the improvement of apportionment of healthcare facilities as it can act as an early-warning system for government policy-makers. Thus, data-driven analysis will provide deep insights into the study of transmission of this viral genome estimation towards immensely affected countries. Also, the study with the help of transmission concern aims to eradicate the panic and stigma that has spread like wildfire and has become a significant part of this pandemic in these times.Coronaviruses are a huge family of viruses that affect neurological, gastrointestinal, hepatic and respiratory systems. The numbers of confirmed cases are increased daily in different countries, especially in Unites State America, Spain, Italy, Germany, China, Iran, South Korea and others. The spread of the COVID-19 has many dangers and needs strict special plans and policies. Therefore, to consider the plans and policies, the predicting and forecasting the future confirmed cases are critical. The time series models are useful to model data that are gathered and indexed by time. Symmetry of error's distribution is an essential condition in classical time series. But there exist cases in the real practical world that assumption of symmetric distribution of the error terms is not satisfactory. In our methodology, the distribution of the error has been considered to be two-piece scale mixtures of normal (TP-SMN). The proposed time series models works well than ordinary Gaussian and symmetry models (especially for COVID-19 datasets), and were fitted initially to the historical COVID-19 datasets. Then, the time series that has the best fit to each of the dataset is selected. Finally, the selected models are applied to predict the number of confirmed cases and the death rate of COVID-19 in the world.In this article we study the temporal evolution of the pandemic Sars-Cov-2 in Italy by means of dynamic population models. The time window of the available population data is between February 24, and March 25. After we upgrade the data until April 1. We perform the analysis with 4 different models and we think that the best candidate to correctly described the italian situation is a generalized Logistic equation. We use two coupled differential equations that model the evolution of the severe infected and the dead. This choice is due to the fact that in Italy the pharyngeal swabs are made only to severe infected, therefore we have no information about asymptomatic people. Moreover, an important observation is that the virus spreads between Regions with some delay. Indeed, we suggest that a different analysis, region by region, would be more sensible than one on the whole Italy. In particular the region Lombardy