Mullen Keene (twinehealth08)
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as sporormielone A from a Sporormiella species.Effective control of domain wall (DW) injection into magnetic nanowires is of great importance for future novel device applications in spintronics, and currently relies on magnetization switching by the local external magnetic field obtained from metal contact lines or a spin-transfer torque (STT) effect from spin-polarized current. However, the external field is an obstacle for realizing practical spintronic devices with all-electric operation, and high current density can occasionally damage the devices. In this work, voltage controlled in-plane magnetic DW injection into a magnetic nanowire in the strain-mediated multiferroic heterostructures is studied by means of fully coupled micromagnetic-mechanical Finite Element Method (FEM) simulations. We propose an engineered shaped nano-magnet on a piezoelectric thin film in which a 180° magnetization rotation in the DW injection region is accomplished with in-plane piezostrain and magnetic shape anisotropy, thereby, leading to a DW injection into the nanowire. In this architecture, we computationally demonstrate repeated creation of DWs by voltage-induced strains without using any magnetic fields. Our FEM simulation results demonstrated an ultralow area energy consumption per injection (∼52.48 mJ m-2), which is drastically lower than the traditional magnetic field and STT driven magnetization switching. A fast-overall injection time within ∼3.4 ns under continuous injection is also demonstrated. Further reduction of energy consumption and injection time can be achieved by optimization of the structure and material selections. The present design and computational analyses can provide an additional efficient method to realize low-power and high-speed spintronic and magnonic devices.This review presents a comprehensive summary of the recent development in semi-artificial photosynthesis, a biological-material hybrid approach to solar-to-chemical conversion that provides new concepts to shape a sustainable future fuelled by solar energy. selleckchem We begin with a brief introduction to natural and artificial photosynthesis, followed by a discussion of the motivation and rationale behind semi-artificial photosynthesis. Then, we summarise how various enzymes can be combined with synthetic materials for light-driven water oxidation, H2 evolution, CO2 reduction, and chemical synthesis more broadly. In the following section, we discuss the strategies to incorporate microorganisms in photocatalytic and (photo)electrochemical systems to produce fuels and chemicals with renewable sources. Finally, we outline emerging analytical techniques to study the bio-material hybrid systems and propose unexplored research opportunities in the field of semi-artificial photosynthesis.The relative stability and predictable reactivity of alkynyl sulfides make them ideal synthons for the development of new transformations. Classic methods for forming alkynyl sulfides relied on dehydrohalogenation approaches. However more recent methods have focused on employing umpolung strategies, as well as nucleophilic and electrophilic thiol alkynylation. In addition, the recent syntheses of Csp-S bonds have trended towards exploiting catalysis and expanding the reaction scope of the methods. A survey of existing methods to form alkynyl sulfides is presented as well as an evaluation with regards to the scope of each method, to provide the reader with an overview of advantages and limitations of current technology.Cellular uptake of antigens (Ags) by antigen-presenting cells (APCs) is vital for effective functioning of the immune system. Intramuscular or subcutaneous administration of vaccine Ags alone is not sufficient to elicit optimal immune responses. Thus, adjuvants are required to induce strong immunogenicity.