Devine McCulloch (turniplycra48)
Besides the new findings, this work should also provide an improved approach to select for DNA-hydrolyzing deoxyribozymes that use various molecules and ions as cofactors.We provide integrated protein sequence-based predictions via https//bio2byte.be/b2btools/. The aim of our predictions is to identify the biophysical behaviour or features of proteins that are not readily captured by structural biology and/or molecular dynamics approaches. Upload of a FASTA file or text input of a sequence provides integrated predictions from DynaMine backbone and side-chain dynamics, conformational propensities, and derived EFoldMine early folding, DisoMine disorder, and Agmata β-sheet aggregation. These predictions, several of which were previously not available online, capture 'emergent' properties of proteins, i.e. selleck the inherent biophysical propensities encoded in their sequence, rather than context-dependent behaviour (e.g. final folded state). In addition, upload of a multiple sequence alignment (MSA) in a variety of formats enables exploration of the biophysical variation observed in homologous proteins. The associated plots indicate the biophysical limits of functionally relevant protein behaviour, with unusual residues flagged by a Gaussian mixture model analysis. The prediction results are available as JSON or CSV files and directly accessible via an API. Online visualisation is available as interactive plots, with brief explanations and tutorial pages included. The server and API employ an email-free token-based system that can be used to anonymously access previously generated results.The axis of the vertebrate neural tube is patterned, in part, by a ventral to dorsal gradient of Shh signaling. In the ventral spinal cord, Shh induces concentration-dependent expression of transcription factors, subdividing neural progenitors into distinct domains that subsequently produce distinct neuronal and glial subtypes. In particular, progenitors of the pMN domain express the bHLH transcription factor Olig2 and produce motor neurons followed by oligodendrocytes, the myelinating glial cell type of the central nervous system. In addition to its role in patterning ventral progenitors, Shh signaling must be maintained through development to specify pMN progenitors for oligodendrocyte fate. Using a forward genetic screen in zebrafish for mutations that disrupt development of oligodendrocytes, we identified a new mutant allele of boc, which encodes a type I transmembrane protein that functions as a coreceptor for Shh. Embryos homozygous for the bocco25 allele, which creates a missense mutation in a Fibronectin type III domain that binds Shh, have normally patterned spinal cords but fail to maintain pMN progenitors, resulting in a deficit of oligodendrocytes. Using a sensitive fluorescent detection method for in situ RNA hybridization, we found that spinal cord cells express boc in a graded fashion that is inverse to the gradient of Shh signaling activity and that boc function is necessary to maintain pMN progenitors by shaping the Shh signaling gradient.During follicular development, a few dominant follicles develop to large antral dominant follicles, whereas the remaining follicles undergo atretic degeneration. Because vascularization on the follicular surface is a morphological feature of dominant follicles, we previously classified these follicles as vascularized follicles (VFs) and non-VFs (NVFs). In NVFs, progesterone producing genes were expressed similarly to that in VFs; however, the progesterone concentration in follicular fluid was low in large NVFs. Therefore, we estimated that progesterone is converted to cortisol, which induces the loss of follicular functions. In this study, we comparative analyzed the expression of genes for progesterone converting enzymes (Cytochrome (CYP)11B1, CYP21A2, Hydroxysteroid (HSD)11B2) and cortisol receptor (NR3C1) in VF and NVF granulosa cells. In NVFs, expression of cortisol producing genes (CY