Callesen Valentin (tulipdonkey1)
Kiwifruit (Actinidia spp.) plants produce economically important fruits containing abundant, balanced phytonutrients with extraordinarily high vitamin C contents. Since the release of the first kiwifruit reference genome sequence in 2013, large volumes of genome and transcriptome data have been rapidly accumulated for a handful of kiwifruit species. To efficiently store, analyze, integrate, and disseminate these large-scale datasets to the research community, we constructed the Kiwifruit Genome Database (KGD; http//kiwifruitgenome.org/). The database currently contains all publicly available genome and gene sequences, gene annotations, biochemical pathways, transcriptome profiles derived from public RNA-Seq datasets, and comparative genomic analysis results such as syntenic blocks and homologous gene pairs between different kiwifruit genome assemblies. A set of user-friendly query interfaces, analysis tools and visualization modules have been implemented in KGD to facilitate translational and applied research in kiwifruit, which include JBrowse, a popular genome browser, and the NCBI BLAST sequence search tool. Other notable tools developed within KGD include a genome synteny viewer and tools for differential gene expression analysis as well as gene ontology (GO) term and pathway enrichment analysis.Grapevine (Vitis vinifera), one of the most economically important fruit crops in the world, suffers significant yield losses from powdery mildew, a major fungal disease caused by Erysiphe necator. In addition to suppressing host immunity, phytopathogens modulate host proteins termed susceptibility (S) factors to promote their proliferation in plants. In this study, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) technology was used to enable the targeted mutagenesis of MLO (mildew resistance Locus O) family genes that are thought to serve as S factors for powdery mildew fungi. Small deletions or insertions were induced in one or both alleles of two grapevine MLO genes, VvMLO3 and VvMLO4, in the transgenic plantlets of the powdery mildew-susceptible cultivar Thompson Seedless. The editing efficiency achieved with different CRISPR/Cas9 constructs varied from 0 to 38.5%. Among the 20 VvMLO3/4-edited lines obtained, one was homozygous for a single mutation, three harbored biallelic mutations, seven were heterozygous for the mutations, and nine were chimeric, as indicated by the presence of more than two mutated alleles in each line. Six of the 20 VvMLO3/4-edited grapevine lines showed normal growth, while the remaining lines exhibited senescence-like chlorosis and necrosis. Importantly, four VvMLO3-edited lines showed enhanced resistance to powdery mildew, which was associated with host cell death, cell wall apposition (CWA) and H2O2 accumulation. Taken together, our results demonstrate that CRISPR/Cas9 genome-editing technology can be successfully used to induce targeted mutations in genes of interest to improve traits of economic importance, such as disease resistance in grapevines.Strawberry shape uniformity is a complex trait, influenced by multiple genetic and environmental components. UNC1999 in vivo To complicate matters further, the phenotypic assessment of strawberry uniformity is confounded by the difficulty of quantifying geometric parameters 'by eye' and variation between assessors. An in-depth genetic analysis of strawberry uniformity has not been undertaken to date, due to the lack of accurate and objective data. Nonetheless, uniformity remains one of the most important fruit quality selection criteria for the development of a new variety. In this study, a 3D-imaging approach was developed to characterise berry shape uniformity. We show that circularity of the maximum circumference had the closest predictive relationship with the manual uniformity score. Combining five or six automated metrics provided the best predictive model, indicating that human assessment of uniformit