Conradsen Kusk (trickkevin1)
The non-adiabatic dynamics of furan excited in the ππ* state (S2 in the Franck-Condon geometry) was studied using non-adiabatic molecular dynamics simulations in connection with an ensemble density functional method. The time-resolved photoelectron spectra were theoretically simulated in a wide range of electron binding energies that covered the valence as well as the core electrons. The dynamics of the decay (rise) of the photoelectron signal were compared with the excited-state population dynamics. It was observed that the photoelectron signal decay parameters at certain electron binding energies displayed a good correlation with the events occurring during the excited-state dynamics. Thus, the time profile of the photoelectron intensity of the K-shell electrons of oxygen (decay constant of 34 ± 3 fs) showed a reasonable correlation with the time of passage through conical intersections with the ground state (47 ± 2 fs). The ground-state recovery constant of the photoelectron signal (121 ± 30 fs) was in good agreement with the theoretically obtained excited-state lifetime (93 ± 9 fs), as well as with the experimentally estimated recovery time constant (ca. 110 fs). check details Hence, it is proposed to complement the traditional TRPES observations with the trXPS (or trNEXAFS) measurements to obtain more reliable estimates of the most mechanistically important events during the excited-state dynamics.Avoidance of healthcare utilization among the general population during pandemic outbreaks has been observed and it can lead to a negative impact on population health. The object of this study is to examine the influence of socio-demographic and health-related factors on the avoidance of healthcare utilization during the global outbreak of a novel coronavirus (COVID-19) in 2020. Data were collected through an online survey four weeks after the Korea Centers for Disease Control and Prevention (KCDC) confirmed the first case in South Korea; 1000 subjects were included in the analysis. The logit model for regression was used to analyze the associations between sociodemographic and health-related factors regarding the avoidance of healthcare utilization. Among the participants, 73.2% avoided healthcare utilization, and there was no significant difference in the prevalence of healthcare avoidance between groups with (72.0%) and without (74.9%) an underlying disease. Sociodemographic characteristics (e.g., gender, age, income level, and residential area) were related to healthcare avoidance. Among the investigated influencing factors, residential areas highly affected by COVID-19 (i.e., Daegu/Gyeoungbuk region) had the most significant effect on healthcare avoidance. This study found a high prevalence of healthcare avoidance among the general population who under-utilized healthcare resources during the COVID-19 outbreak. However, the results reveal that not all societal groups share the burden of healthcare avoidance equally, with it disproportionately affecting those with certain sociodemographic characteristics. This study can inform healthcare under-utilization patterns during emerging infectious disease outbreaks and provide information to public health emergency management for implementing strategies necessary to improve the preparedness of the healthcare system.The sources of mesenchymal stromal cells (MSCs) for cell therapy trials are expanding, increasing the need for their characterization. Here, we characterized multi-donor, turbinate-derived MSCs (TB-MSCs) that develop from the neural crest, and compared them to bone marrow-derived MSCs (BM-MSCs). TB-MSCs had higher proliferation potential and higher self-renewal of colony forming cells, but lower potential for multi-lineage differentiation than BM-MSCs. TB-MSCs expressed higher levels of neural crest markers and lower levels of pericyte-specific markers. These neural crest-like properties of TB-MSCs were reflected by their propensity to differentiate into neuronal cel