Carlson Hoffmann (tightstea28)
Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet. RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified. LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression. LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy. LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy. Long noncoding RNAs (lncRNAs) are involved in the tumorigenesis and progression of human cancers, including renal cell carcinoma (RCC). Small nucleolar RNA host gene 4 (SNHG4) is reported to play an essential role in tumor growth and progression. However, the molecular mechanisms and function of SNHG4 in RCC remain undocumented. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine expression levels of SNHG4 in RCC tissue samples and cell lines. Cell counting kit-8, western blotting, activities of caspase-3, -8, and -9, wound-healing, and transwell invasion assays were performed to explore cell proliferation, apoptosis, migration, and invasion. The interaction among SNHG4, miR-204-5p, and RUNX2 was verified by bioinformatic analysis, a luciferase gene report, qRT-PCR, western blot analysis, and RNA immunoprecipitation assays. Xenograft mouse models were carried out to examine the role of SNHG4 in RCC in vivo. SNHG4 was highly expressed in RCC tissue samples and cell lines, and its upregulation was significantly involved in node involvement, distant metastasis, and reduced overall and relapse-free survival of patients with RCC. SNHG4 acted as an oncogenic lncRNA with promoted RCC cell proliferation, migration, invasion, and inhibited apoptosis. SNHG4 boosted tumor growth in xenograft mouse models. Mechanistically, SNHG4 functioned as a competing endogenous RNA (ceRNA) for sponging miR-204-5p, leading to the upregulation of its target RUNX2 to promote RCC cell proliferation and invasion. SNHG4 and miR-204-5p might be indicated in RCC progression via RUNX2, suggesting the potential use of SNHG4/miR-204-5p/RUNX2 axis in RCC treatment. SNHG4 and miR-204-5p might be indicated in RCC progression via RUNX2, suggesting the potential use of SNHG4/miR-204-5p/RUNX2 axis in RCC treatment. The prognosis of colon cancer is poor for metastasis, while the mechanism, especially adipocytes related, is not yet clear. The purpose of this study is to determine the effects of fatty acid binding protein 4 (FABP4), a transporter for lipids, on colon cancer progression. The distribution of lipids and FABP4 was tested in the colon cancer tissues and adjacent normal tissues, and their relationship was also verified in vitro. Experiments about cellular invasion, migration and proliferation were performed to detect the impacts of FABP4 on the biological behaviors of colon cancer, an