McMahon Funder (tankmoney8)
Developing a photocatalytic system for water splitting to H2 is a promising strategy to address fossil fuel consumption. Exploring photocatalysts with high-performance, steady and low-cost has been the essential goals toward photo-reduction of water. Herein, noble-metal-free polyoxometalate Na12[(α-SbW9O33)2Cu3(H2O)3]·46H2O (Cu3POM) was coupled with mesoporous, multiphase TiO2 (Meso-TiO2) for the first time to catalyze hydrogen production. The composite system exhibited excellent photocatalytic hydrogen production activity. After 2.5 h of illumination, the activity was enhanced 77 times (1284.8 μmol/g) in the presence of Cu3POM compared to the blank Meso-TiO2 (16.6 μmol/g). Nitrogen adsorption-desorption isotherms results reveal the mesoporous characteristics of Meso-TiO2 which could increase the active sites of the reaction. The cycling experiment demonstrated the composite system remained stable after five cycles without activity loss. selleck inhibitor Multiple characterizations reveal that Ti3+ is generated after the reaction, which further narrows the band gap and promotes the photocatalytic performance of the composite system. The suitable LUMO energy level of Cu3POM was confirmed by electrochemical tests. It accelerates the transfer of photo-generated electrons from the CB of Meso-TiO2 to the protons in the solution, resulting in a high photocatalytic H2 production performance. The combination of Meso-TiO2 with reductive polyoxometalate innovatively provides novel insights into the design of efficient photocatalytic materials for H2 production. The spontaneous displacement of both spreading and receding droplets on surfaces are extensively involved in numerous technical applications. We hypothesize that the spreading and receding displacement behaviors could be interpreted differently due to opposite flow directions at the three-phase contact line. We performed two groups of displacement experiments using different initial setups of oil droplets on silanized glass surfaces in aqueous surroundings. The different initial configurations mostly resulted in oil displacement in opposite directions either spreading or receding of the oil droplet. Different static states were observed at the end of the spreading and receding processes on surfaces with the same wettability due to the contact angle hysteresis. The dynamic displacement was analyzed using the hydrodynamic and molecular kinetic models, which showed distinct applicabilities for the data description of the spreading and receding possesses. The model analysis further indicated the different n microscopic slip length and contact line friction in the respective models. This study can shed light on the fundamental role of the displacement direction in the spontaneous liquid-liquid displacement.The development of recyclable photocatalysts with broad-spectral photoresponse has drawn much attention for the practical application in flowing wastewater treatment. Herein, we have reported the construction of BiOBr/Ag/AgBr junctions on carbon fiber cloth (CFC) as broad-spectral-response filter-membrane-shaped photocatalyst that is efficient and easily recyclable. With CFC as the substrate, BiOBr nanosheets (diameter 0.5-1 μm) were firstly synthesized by a hydrothermal method, and then Ag/AgBr nanoparticles (size 100-300 nm) were prepared on the surface of CFC/BiOBr by using a chemical bath deposition route. CFC/BiOBr/Ag/AgBr presents superior flexibility and wide UV-Vis-NIR photoabsorption (from 200 to 1000 nm). Under visible light irradiation, CFC/BiOBr/Ag/AgBr (area 4 × 4 cm2) can remove 99.8% rhodamine B (RhB), 99.0% acid orange 7 (AO7), and 93.0% tetracycline (TC) after 120 min, better than CFC/BiOBr (95.4% RhB, 55.0% AO7 and 91.2% TC). Interestingly, when CFC/BiOBr/Ag/AgBr is served as a filter-membrane in a photoreactor to purify the flowing sewage (RhB, rate ~1.5 L h-1), the degradation rate of RhB goes up to 90.0% after ten filtering grad