Shaffer Black (tailguilty7)
Childhood experiences play a profound role in conferring risk and resilience for brain and behavioral development. However, how different facets of the environment shape neurodevelopment remains largely unknown. Here we sought to decompose heterogeneous relationships between environmental factors and brain structure in 989 school-aged children from the Adolescent Brain Cognitive Development Study. We applied a cross-modal integration and clustering approach called 'Similarity Network Fusion', which combined two brain morphometrics (i.e., cortical thickness and myelin-surrogate markers), and key environmental factors (i.e., trauma exposure, neighborhood safety, school environment, and family environment) to identify homogeneous subtypes. Depending on the subtyping resolution, results identified two or five subgroups, each characterized by distinct brain structure-environment profiles. Notably, more supportive caregiving and school environments were associated with greater myelination, whereas less supportive caregiving, higher family conflict and psychopathology, and higher perceived neighborhood safety were observed with greater cortical thickness. These subtypes were highly reproducible and predicted externalizing symptoms and overall mental health problems. Our findings support the theory that distinct environmental exposures are differentially associated with alterations in structural neurodevelopment. Delineating more precise associations between risk factors, protective factors, and brain development may inform approaches to enhance risk identification and optimize interventions targeting specific experiences.Reading is an important skill for human beings to obtain information, whose acquisition is a major learning task for children. Especially, compared with single word reading, text reading requires an integration of multiple cognitive processes, which makes its underlying neural developmental mechanism not only extremely complicated but also remained poorly understood. Employing the graph theory analysis method, the present study explored the development of brain in the context of story reading from the perspective of connectomics. Forty-two primary school students and thirty-two adults read the stories in the functional magnetic resonance imaging (fMRI) experiment. We found that compared with children, adults had increased connectivity strength, nodal degree, and modular interactions for vision-related and semantics-related brain regions while decreased connectivity strength, nodal degree, and modular interactions for phonology-related brain regions. Brain-behavior association analysis suggested that the transmission to vision-related brain circuits would enhance the reading performance in adults, whereas phonology-related brain circuits played important roles in children's reading before they develop into fluent readers. Collectivity, we highlight a shift from reliance on phonology-related networks to semantics-related and vision-related networks with age for text reading, which provides insights into the underlying neural signature of developmental cognitive mechanisms.The specificity with which past experiences can be remembered varies across the lifespan, possibly due to differences in how precisely information is encoded. Memory formation can be investigated through repetition effects, the common finding that neural activity is altered when stimuli are repeated. However, whether differences in this indirect measure of memory formation relate to lifespan differences in memory specificity has not yet been established. In the present study, we examined repetition effects in event-related potentials and their relation to recognition. During incidental encoding, children (aged 7-9 years), young adults (18-30 years), and older adults (65-76 years) viewed repeated object images from different categories. During subsequent recognition, we distinguished memory for the specific items versus the general categories. We ide