Higgins Obrien (tableoxygen7)

The 2 µm wavelength band has recently gained increased attention for potential applications in next-generation optical communication. However, it is still challenging to achieve effective photodetection in the 2 µm wavelength band using group-IV-based semiconductors. Here we present an investigation of GeSn resonant-cavity-enhanced photodetectors (RCEPDs) on silicon-on-insulator substrates for efficient photodetection in the 2 µm wavelength band. Narrow-bandgap GeSn alloys are used as the active layer to extend the photodetection range to cover the 2 µm wavelength band, and the optical responsivity is significantly enhanced by the resonant cavity effect as compared to a reference GeSn photodetector. Temperature-dependent experiments demonstrate that the GeSn RCEPDs can have a wider photodetection range and higher responsivity in the 2 µm wavelength band at higher temperatures because of the bandgap shrinkage. These results suggest that our GeSn RCEPDs are promising for complementary metal-oxide-semiconductor-compatible, efficient, uncooled optical receivers in the 2 µm wavelength band for a wide range of applications.We describe topological edge solitons in a continuous dislocated Lieb array of helical waveguides. The linear Floquet spectrum of this structure is characterized by the presence of two topological gaps with edge states residing in them. A focusing nonlinearity enables families of topological edge solitons bifurcating from the linear edge states. Such solitons are localized both along and across the edge of the array. Due to the nonmonotonic dependence of the propagation constant of the edge states on the Bloch momentum, one can construct topological edge solitons that either propagate in different directions along the same boundary or do not move. This allows us to study collisions of edge solitons moving in opposite directions. Such solitons always interpenetrate each other without noticeable radiative losses; however, they exhibit a spatial shift that depends on the initial phase difference.Three-dimensional (3D) range-gated imaging has great potential in underwater target detection, navigation, and marine scientific research due to good backscatter suppression. However, in turbid water, apparent backscatter leads to bad range resolution and accuracy in 3D reconstruction. To solve this problem, a 3D deblurring-gated range-intensity correlation imaging method is proposed based on light propagation property in water. In the method, only the water attenuation coefficient and a reference image are needed to calculate the depth-noise maps (DNM) of target gate images at different ranges. By subtracting the DNMs from target gate images, new gate images with less noise can be obtained, and then 3D images with high range resolution and accuracy are reconstructed. To prove the feasibility of the proposed method, experiments have been performed in pools under different water conditions. The results show that a higher peak signal-to-noise ratio improvement is about 9 dB in new gated images.In this Letter, we introduce a new kind of radially polarized beam called the radially polarized symmetric Airy beam (RPSAB). Compared to the linearly polarized symmetric Airy beam (SAB), the hollow focus spot of RPSAB enables it to trap a microparticle whose refractive index is lower than that of the surrounding medium, and the focus intensity of RPSAB is nearly three times higher than that of SAB under the same conditions. Also, we present the on-axis and off-axis radially polarized symmetric Airy vortex beam (RPSAVB). In the on-axis case, we find the maximum intensity of RPSAVB is about two times higher than that of RPSAB. For the off-axis case, we prove that slight misalignment of the vortex and RPSAB enables guiding the vortex into one of the self-accelerating channels, the same as the symmetric Airy vortex beam. Our results may expand the applications of RPSAB in laser cutting, metal processing, nanofocusing, and three-dimensional