Dickson Hartvig (tablegoal47)
Among these, heating (60 °C) was critical for the β-cyclocitral formation. Furthermore, acidification with a 1-h storage was more effective than heating when comparing the obtained amounts. The present results indicated that β-cyclocitral did not exist as the intact form in cells, because it was formed by heating or acidification of the resulting intermediates during the analysis by SPME. Vorinostat The obtained results would be helpful to understand the formation and role of β-cyclocitral in an aquatic environment.Mechanical stages are routinely used to scan large expanses of biological specimens in photoacoustic imaging. This is primarily due to the limited field of view (FOV) provided by optical scanning. However, stage scanning becomes impractical at higher scanning speeds, or potentially unfeasible with heavier samples. Also, the slow scan-rate of the stages makes high resolution scanning a time-consuming process. Some clinical applications such as microsurgery require submicron resolution in a reflection-mode configuration necessitating a method that can acquire large field of views with a small raster scanning step size. In this study, we describe a method that combines mechanical stages with optical scanning for the rapid acquisition of high-resolution large FOVs. Optical scanning is used to acquire small frames in a two-dimensional grid formed by the mechanical stages. These frames are captured with specific overlap for effective image registration. Using a step size of 200 nm, we demonstrate mosaics of carbon fiber networks with FOVs of 0.8 × 0.8 mm2 captured in under 70 s with 1.2 µm image resolution. Larger mosaics yielding an imaging area of 3 × 3 mm2 are also shown. The method is validated by imaging a 1 × 1 mm2 section of unstained histopathological human tissue.Processing of fish in aquaculture generates considerable amounts of by-products that remain underused and/or unexploited. We evaluated the nutritive content of fish by-products (head, gills, intestines, trimmings, bones, and skin) from meagre and gilthead sea bream fish species reared in Greece in order to estimate their nutritional value for future development of high added-value products. The proximate composition of the fish samples (total protein, total lipid, ash, moisture, and macro-element content) was determined using the Association of Official Analytical Chemists (AOAC) and International Organization for Standardization (ISO) official methods. The content of fatty acids was determined using capillary gas chromatography, and the protein profile was estimated employing scientific orbitrap mass spectrophotometer methodology. The nutrient composition of fish by-products presented fluctuations among the different by-products. Skin was the most significant protein source, trimmings and bones were high in calcium, and the head, intestines, and bones were a good source of lipids. The most abundant lipid acids found in by-products were oleic, palmitic, linoleic, and eicosenoic acids, whereas the most abundant proteins were adenosine triphosphate (ATP) synthase subunit epsilon, mitochondrial nicotinamide adenine dinucleotide (NADH) dehydrogenase, and mitochondrial cytochrome b-c1 complex subunit 8. These data suggest that by-products constitute valuable sources of nutrients and could therefore be exploited in accordance with the principles of a circular economy.The total synthesis of (-)-antrocin and its enantiomer are presented. Antrocin (-)-1 is an important natural product which acts as an antiproliferative agent in a metastatic breast cancer cell line (IC50 0.6 μM). The key features of this synthesis are (a) selective anti-addition of trimethylsilyl cyanide (TMSCN) to α,β-unsaturated ketone; (b) resolution of (±)-7 using chiral auxiliary L-dimethyl tartrate through formation of cyclic ketal diastereomers followed by simple column chromatography separation and acid hydrolysis; (c) substrate-controlled stereoselective aldol condensation of (+)-12 w