Richards Gold (stitchliver38)
With age, neural stem cell (NSC) function in the adult ventricular-subventricular zone (V-SVZ) declines, reducing memory and cognitive function in males; however, the impact on females is not well understood. To obtain a global view of how age and sex impact the mouse V-SVZ, we constructed 3D montages after multiplex immunostaining, and used computer-based 3D image analysis to quantify data across the entire niche at 2, 18, and 22 months. We discovered dramatic sex differences in the aging of the V-SVZ niche vasculature, which regulates NSC activity females showed increased diameter but decreased vessel density with age, while males showed decreased diameter and increased tortuosity and vessel density. Accompanying these vascular changes, males showed significant decline in NSC numbers, progenitor cell proliferation, and more disorganized migrating neuroblast chains with age; however, females did not. By examining the entire 3D niche, we found significant sex differences, with females being relatively spared through very old age.Microphysiological systems (MPSs) (i.e., tissue or organ chips) exploit microfluidics and 3D cell culture to mimic tissue and organ-level physiology. The advent of human induced pluripotent stem cell (hiPSC) technology has accelerated the use of MPSs to study human disease in a range of organ systems. However, in the reduction of system complexity, the intricacies of vasculature are an often-overlooked aspect of MPS design. The growing library of pluripotent stem cell-derived endothelial cell and perivascular cell protocols have great potential to improve the physiological relevance of vasculature within MPS, specifically for in vitro disease modeling. Three strategic categories of vascular MPS are outlined self-assembled, interface focused, and 3D biofabricated. This review discusses key features and development of the native vasculature, linking that to how hiPSC-derived vascular cells have been generated, the state of the art in vascular MPSs, and opportunities arising from interdisciplinary thinking.Microglia, the immune cells of the central nervous system, play critical roles in brain physiology and pathology. We report a novel approach that produces, within 10 days, the differentiation of human induced pluripotent stem cells (hiPSCs) into microglia (iMG) by forced expression of both SPI1 and CEBPA. High-level expression of the main microglial markers and the purity of the iMG cells were confirmed by RT-qPCR, immunostaining, and flow cytometry analyses. Whole-transcriptome analysis demonstrated that these iMGs resemble human fetal/adult microglia but not human monocytes. Moreover, these iMGs exhibited appropriate physiological functions, including various inflammatory responses, ADP/ATP-evoked migration, and phagocytic ability. When co-cultured with hiPSC-derived neurons, the iMGs respond and migrate toward injured neurons. This study has established a protocol for the rapid conversion of hiPSCs into functional iMGs, which should facilitate functional studies of human microglia using different disease models and also help with drug discovery.Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization a