Lysgaard Moesgaard (stewdegree29)

The gas-phase geometries, binding energies, enthalpies, and free energies of methanol-(water)n and ethanol-(water)n clusters containing n=1-10,20,30,40, and 50 water molecules have been calculated using density functional theory. The binding energies are calculated at 0 K. The enthalpies are calculated at a temperature of 298.15 K and pressure of 1013.25 hPa (1 atm). The free energies are calculated at a wide range of temperature (T) and pressure (P) (from T = 298.15 K, P = 1013.25 hPa to T = 216.65 K, P = 226.32 hPa). The results show that the free energy of the formation of a specific cluster from its free molecules is negative (i.e., favorable) only below some critical temperature and pressure, which depends on the cluster's size. One of the most common volatile organic compounds (VOCs) in the troposphere is methanol, ethanol, and atmospheric aerosols containing methanol and ethanol. The Rayleigh scattering properties of methanol-water and ethanol-water clusters have been investigated. The scattering intensities were computed at static (∞ nm) and different wavelengths (700, 600, 500, and 400 nm) of naturally polarized light. Rayleigh scattering intensities increase about 9%-10% at 400 nm compared to the static limit (∞ nm) for both methanol-water and ethanol-water clusters.Fungal melanins have been considered as potential biosorbents due to their metal-binding properties, stability, and scalability. Previous studies established scalable fungal melanin production methods with promising strains, however, their applicability for metal-contaminated effluents treatment has not been sufficiently reported. Herein, melanin pigment derived from Amorphotheca resinae was produced and characterized using microscopy and spectroscopy techniques. Adsorptive properties towards Cu(II), Pb(II), Cd(II), and Zn(II) were evaluated using batch tests. Selleck MAPK inhibitor Melanin pigment was composed of aggregates of nanosized particles with indole-based constituents. Adsorption capacities increased with the pH of solution, especially at pH > 4.0. Maximum binding capacities of Cu(II), Pb(II), Cd(II), and Zn(II) on melanin were 69.18, 103.23, 24.31, and 13.57 mg/g, respectively. The competitive adsorption experiments elucidated affinity as Cu(II)>Pb(II)≫Cd(II)>Zn(II). Adsorption time generally required less then 2.5 h to reach equilibrium; the pseudo-second-order kinetic model well described the kinetics. Chelating ability of free radicals in pigment was considered as a possible mechanism for adsorption. Initial adsorption capacities remained almost intact even after 5 consecutive adsorption-desorption cycles. Complete removal of Cu(II), Pb(II), and Cd(II) from metal-contaminated effluent was confirmed. Consequently, melanin pigment derived from A. resinae can be used as a biosorbent suitable for the treatment of metal-contaminated aqueous solutions. The aim of this study is to assess the stress distribution of a nanoceramic resin CAD/CAM material, Lava Ultimate (LU) and a polymer-infiltrated hybrid ceramic CAD/CAM material, Vita Enamic (VE) for enamel replacement for Nayyar core (corono-radicular dowel and core) or post-retained restoration designs of a maxillary first premolar tooth with missing palatal cusp. A three dimensional finite element (FE) modelof maxillary first premolar with two roots was modeled. A mesial-occlusal-distal-palatal (MODP) cavity was designed with cavity floor above cemento-enamel junction and including buccal cuspal reduction. Restoration designs consisted of Nayyar core restoration (NCR) and post-retained restoration (PRR) with a glass fiber post. Vita Enamic (VE), Lava Ultimate (LU) were used for enamel and everX Posterior was used for dentin replacement. Vertical occlusal load (100N) was applied on a spherical solid rigid material simulating the food stuff. Von Mises (VM) and maximum principle stress values were evaluatemissing palatal cusp, VE may be a suitable material for NCR and P