Blom Bullock (springcoast2)

Further studies identified the critical role of key modulators, such as β-arrestin2 and cyclic adenosine monophosphate response element-binding protein, in mediating the CaSR-dependent anti-inflammatory effect of γ-EV. Finally, the transport efficiency of γ-EV was evaluated through a monolayer of intestinal epithelial cells (Caco-2), and the apparent permeability (Papp) of the peptide was found to be 1.56 × 10-6 cm/s.This study aimed at identifying antioxidant and anti-inflammatory peptides derived from the in vitro gastrointestinal digestion of germinated and heated (microwave and boiling) foxtail millet. The protein digest fraction containing low-molecular-weight peptides ( less then 3 kDa) and the most hydrophobic subfraction (F4) abundant in random coil structure were responsible for the bioactivity. Then, seven novel peptides were identified using liquid chromatography with tandem mass spectrometry (LC-MS/MS) from the most potent F4 subfraction derived from boiled germinated millet. All seven synthesized peptides significantly (p less then 0.05) reduced reactive oxygen species production and increased glutathione content and superoxide dismutase activity in Caco-2 cells, whereas two peptides (EDDQMDPMAK and QNWDFCEAWEPCF) were superior in inhibiting nitric oxide, tumor necrosis factor-α (reduced to 42.29 and 44.07%, respectively), and interleukin-6 (reduced to 56.59 and 43.45%, respectively) production in a RAW 264.7 cell model. This study is the first to report about the potential role of germinated and heated foxtail millet as a source of dual antioxidant and anti-inflammatory peptides.Trapping of methylglyoxal (MGO) has been determined to be one of the potential mechanisms for dietary polyphenols to prevent chronic diseases. In this study, myricetin was demonstrated to efficiently trap MGO to generate mono- and di-MGO adducts under in vitro conditions. Furthermore, the mono- and di-MGO adducts of myricetin were detected in urine and fecal samples collected from myricetin-treated mice based on LC-MS analysis. More importantly, the mono-MGO adducts of the mono- and di-methylated myricetin were also found in these mouse samples. Further dose-dependent studies demonstrated that myricetin and its methylated metabolites significantly trapped MGO in a dose-dependent manner with the 400 mg/kg dose having the highest trapping efficacy (mono-MGO-myricetin 272.0 ± 90.9 nM in urine and 1.05 ± 0.67 μg/g in feces; mono-MGO-mono-Me-myricetin 135.2 ± 77.6 nM in urine and 1.16 ± 0.65 μg/g in feces; and mono-MGO-di-Me-myricetin 17.0 ± 5.9 nM in urine and 0.19 ± 0.04 μg/g in feces) compared to the 100 and 200 mg/kg doses. In conclusion, this study demonstrates for the first time the in vivo trapping efficacy of myricetin, suggesting that intake of myricetin-containing foods has the potential to scavenge MGO in vivo and to prevent MGO-induced harmful effects to human health.As bio-based food packaging materials promise a more sustainable future, this work fabricated edible oleofilms by casting beeswax-in-water Pickering emulsions, which were formed by the physical hybrid particles of bacterial cellulose nanofibrils (BCNFs) and carboxymethyl chitosan (CCS) (BC/CCS). The emulsion droplet size was varied from 4 to 9 μm, and the emulsion index (EI) was all up to 100%. The obtained emulsions exhibited excellent long-term stability, and there was no change in the EI (100%) after the storage of the emulsion for 3 months. Moreover, the environmental temperature had almost no impact on the droplet size and EI of the emulsion. read more The mechanical properties of the oleofilms were significantly improved by enhancing the content of BC/CCS. There was also a visual reduction in the water vapor permeability (WVP) value, which was lower than 1.1 × 10-7 g·m-1·h-1·Pa-1. Furthermore, the obtained oleofilms exhibited a notable improvement in surface hydrophobicity, and surprisingly, it could be easily redispersed into water to recover back to the emu