Kring Halsey (spleenswamp93)

Fluorescently labeled dibenzodiazepinone-type muscarinic acetylcholine receptor (MR) antagonists, including dimeric ligands, were prepared using red-emitting cyanine dyes. Probes containing a fluorophore with negative charge showed high M2R affinities (pKi (radioligand competition binding) 9.10-9.59). Binding studies at M1 and M3-M5 receptors indicated a M2R preference. Flow cytometric and high-content imaging saturation and competition binding (M1R, M2R, and M4R) confirmed occupation of the orthosteric site. Confocal microscopy revealed that fluorescence was located mainly at the cell membrane (CHO-hM2R cells). Results from dissociation and saturation binding experiments (M2R) in the presence of allosteric M2R modulators (dissociation W84, LY2119620, and alcuronium; saturation binding W84) were consistent with a competitive mode of action between the fluorescent probes and the allosteric ligands. Taken together, these lines of evidence indicate that these ligands are useful fluorescent molecular tools to label the M2R in imaging and binding studies and suggest that they have a dualsteric mode of action.Collisional intermolecular interactions between excited states form short-lived dimers and complexes that lead to the emergence of excimer/exciplex emission of lower energy, a phenomenon which must be differentiated from the photoluminescence (PL) arising from the monomeric molecules. Although the utilization of noncovalent bonding interactions, leading to the generation of excimer/exciplex PL, has been investigated extensively, precise control of the aggregates and their persistence at very low concentrations remains a rare phenomenon. In the search for a fresh approach, we sought to obtain exciplex PL from permanent structures by incorporating anthracene moieties into pyridinium-containing mechanically interlocked molecules. Beyond the optical properties of the anthracene moieties, their π-extended nature enforces [π···π] stacking that can overcome the Coulombic repulsion between the pyridinium units, affording an efficient synthesis of an octacationic homo[2]catenane. Notably, upon increasing the ionic strength by adding tetrabutylammonium hexafluorophosphate, the catenane yield increases significantly as a result of the decrease in Coulombic repulsions between the pyridinium units. Although the ground-state photophysical properties of the free cyclophane and the catenane are similar and show a charge-transfer band at ∼455 nm, their PL characters are distinct, denoting different excited states. The cyclophane emits at ∼562 nm (quantum yield ϕF = 3.6%, emission lifetime τs = 3 ns in MeCN), which is characteristic of a disubstituted anthracene-pyridinium linker. By contrast, the catenane displays an exciplex PL at low concentration (10-8 M) with an emission band centered on 650 nm (ϕF = 0.5%, τs = 14 ns) in MeCN and at 675 nm in aqueous solution. Live-cell imaging performed in MIAPaCa-2 prostate cancer cells confirmed that the catenane exciplex emission can be detected at micromolar concentrations.Organ-on-chip (OOC) devices are miniaturised devices replacing animal models in drug discovery and toxicology studies. The majority of OOC devices are made from Polydimethylsiloxane (PDMS), an elastomer widely used in microfluidic prototyping, but posing a number of challenges to experimentalists, including leaching of uncured oligomers and uncontrolled adsorption of small compounds. Here we assess the suitability of Polylactic Acid (PLA) as a replacement material to PDMS for microfluidic cell culture and OOC applications. We changed the wettability of PLA subtrates and demonstrated the functionalization method to be stable over a time period of at least 9 months. We successfully culture human cells on PLA substrates and devic-es, without coating. We demonstrated that PLA does not absorb small molecules, is transparent (92 % transparency) and has low autofluorescence. As a proof of concept of manufacturability, biocompatibility and