Newell Gadegaard (spleenjune63)
Finally, we show that pre-synaptic active zones are preferentially removed from severed axons within hours after injury and that depriving recently injured flies of sleep slows the removal of both active zones and damaged axons. These data support a bidirectional interaction between sleep and synapse pruning after antennal injury locally increasing the need to clear neural debris is associated with increased sleep, which is required for efficient active zone removal after injury. Sleep is universal across species and essential for quality of life and health, as evidenced by the consequences of sleep loss. Sleep might homeostatically normalize synaptic gains made over wake states in order to reset information processing and storage and support learning, and sleep-associated synaptic (ultra)structural changes have been demonstrated recently. However, causal relationships between the molecular and (ultra)structural status of synapses, sleep homeostatic regulation, and learning processes have yet to be established. We show here that the status of the presynaptic active zone can directly control sleep in Drosophila. Short sleep mutants showed a brain-wide upregulation of core presynaptic scaffold proteins and release factors. Increasing the gene copy number of ELKS-family scaffold master organizer Bruchpilot (BRP) not only mimicked changes in the active zone scaffold and release proteins but importantly provoked sleep in a dosage-dependent manner, qualitatively and quantitatively reminiscent of sleep deprivation effects. Conversely, reducing the brp copy number decreased sleep in short sleep mutant backgrounds, suggesting a specific role of the active zone plasticity in homeostatic sleep regulation. Finally, elimination of BRP specifically in the sleep-promoting R2 neurons of 4xBRP animals partially restored sleep patterns and rescued learning deficits. Our results suggest that the presynaptic active zone plasticity driven by BRP operates as a sleep homeostatic actuator that also restricts periods of effective learning. Empathy, the ability to share another individual's emotional state and/or experience, has been suggested to be a source of prosocial motivation by attributing negative value to actions that harm others. The neural underpinnings and evolution of such harm aversion remain poorly understood. Here, we characterize an animal model of harm aversion in which a rat can choose between two levers providing equal amounts of food but one additionally delivering a footshock to a neighboring rat. We find that independently of sex and familiarity, rats reduce their usage of the preferred lever when it causes harm to a conspecific, displaying an individually varying degree of harm aversion. Polyethylenimine nmr Prior experience with pain increases this effect. In additional experiments, we show that rats reduce the usage of the harm-inducing lever when it delivers twice, but not thrice, the number of pellets than the no-harm lever, setting boundaries on the magnitude of harm aversion. Finally, we show that pharmacological deactivation of the anterior cingulate cortex, a region we have shown to be essential for emotional contagion, reduces harm aversion while leaving behavioral flexibility unaffected. This model of harm aversion might help shed light onto the neural basis of psychiatric disorders characterized by reduced harm aversion, including psychopathy and conduct disorders with reduced empathy, and provides an assay for the development of pharmacological treatments of such disorders. VIDEO ABSTRACT. Ancient Chinese poetry is constituted by structured language that deviates from ordinary language usage [1, 2]; its poetic genres impose unique combinatory constraints on linguistic elements [3]. How does the constrained poetic structure facilitate speech segmentation when common linguistic [4-8] and statistical cues [5, 9] are unreliable to listeners in poems? We generated artificial Jueju, which arguably has the most constrai