Patel Matthews (spikesystem51)

95 mg L-1 d-1, respectively. The depigmented and defatted carbohydrate rich biomass was considered as raw material for bioethanol production. The bioethanol yield range was 90-94% of the theoretical yield using Saccharomyces cerevisiae INVSC-1 in a double jacket reactor. To improve the viability of the process, the spent media after ethanol fermentation was subsequently used for methane production using mixed microbial consortium. The energy recovery from the process was 40.39% and 39.7% for UTEX 90 and CC 2656, respectively when C. reinhardtii biomass was used as substrate for biofuel production. The present investigation concedes with the potentiality of algae as a favourable 3rd generation feedstock to address the existing challenges of clean energy production with concomitant CO2 sequestration.Estimating the ambient concentration of nitrogen dioxide (NO2) is challenging because NO2 generated by local fossil fuel combustion varies greatly in concentration across space and time. This study demonstrates an integrated hybrid approach combining dispersion modeling and land use regression (LUR) to predict daily NO2 concentrations at a high spatial resolution (e.g., 50 m) in the New York tri-state area. The daily concentration of traffic-related NO2 was estimated at the Environmental Protection Agency's NO2 monitoring sites in the study area for the years 2015-2017, using the Research LINE source (R-LINE) model with inputs of traffic data provided by the Highway Performance and Management System and meteorological data provided by the NOAA Integrated Surface Database. We used the R-LINE-predicted daily concentrations of NO2 to build mixed-effects regression models, including additional variables representing land use features, geographic characteristics, weather, and other predictors. The mixed model was selected by the Elastic Net method. Each model's performance was evaluated using the out-of-sample coefficient of determination (R2) and the square root of mean squared error (RMSE) from ten-fold cross-validation (CV). The mixed model showed a good prediction performance (CV R2 0.75-0.79, RMSE 3.9-4.0 ppb). R-LINE outputs improved the overall, spatial, and temporal CV R2 by 10.0%, 18.9% and 7.7% respectively. Given the output of R-LINE is point-based and has a flexible spatial resolution, this hybrid approach allows prediction of daily NO2 at an extremely high spatial resolution such as city blocks.Nowadays, there is no direct evidence about the presence of microplastics (MPs) in the atmosphere above ground level. Here, we investigated the occurrence, chemical composition, shape, and size of MPs in aircraft sampling campaigns flying within and above the planetary boundary layer (PBL). The results showed that MPs were present with concentrations ranging from 1.5 MPs m-3 above rural areas to 13.9 MPs m-3 above urban areas. MPs represented up to almost one third of the total amount of microparticles collected. Fourier Transform Infrared Spectroscopy allowed identifying seven types of MPs with the highest diversity corresponding to urban areas. Atmospheric transport and deposition simulations were performed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Air mass trajectory analyses showed that MPs could be transported more than 1000 km before being deposited. This pioneer study is the first evidence of the microplastic presence above PBL and their potential long-range transport from their point of release even crossing distant borders.With the rapid growth of the electronic cigarette (e-cig) market, there is an increasing number of vape shops that exclusively sell e-cigs. The use of e-cigs in the vape shop is a primary source of indoor particles, which might transport to its nearby indoor spaces in the multiunit setting. In this study, six pairs of vape shops and neighboring businesses in Southern California were recruited for real-time measurements of particulate pollutants between February 2017