McLain Thyssen (soyounce55)
Cigarette smoking is an independent risk factor for coronary heart disease and is associated with impaired postprandial metabolism. Acute exercise reduces postprandial lipemia and improves other coronary heart disease risk markers in nonsmokers. Less is known about responses in cigarette smokers. Twelve male cigarette smokers (mean ± SD; age = 23 ± 4 yr, body mass index = 24.9 ± 3.0 kg·m-2) and 12 male nonsmokers (age = 24 ± 4 yr, body mass index = 24.1 ± 2.0 kg·m-2) completed two, 2-d conditions (control and exercise) in a randomized crossover design. On day 1, participants rested for 9 h (0800-1700) in both conditions except a 60-min treadmill run (65% ± 7% peak oxygen uptake, 2.87 ± 0.54 MJ) was completed between 6.5 and 7.5 h (1430-1530) in the exercise condition. On day 2 of both conditions, participants rested and consumed two high-fat meals over 8 h (0900-1700) during which 13 venous blood samples and nine resting arterial blood pressure measurements were collected. Smokers exhibited higher postp metabolic health of cigarette smokers and nonsmokers. Acute moderate-intensity running reduced postprandial triacylglycerol, insulin, and resting arterial blood pressure the day after exercise in male cigarette smokers and nonsmokers. These findings highlight the ability of acute exercise to augment the postprandial metabolic health of cigarette smokers and nonsmokers. We recently demonstrated that coingestion of NaHCO3 to counteract ketoacidosis resulting from oral ketone ester (KE) intake improves mean power output during a 15-min time trial (TT) at the end of a 3-h cycling race by ~5%. This ergogenic effect occurred at a time when blood ketone levels were low, as ketosis was only induced during the initial ~2 h of the race. Therefore, in the current study, we investigated whether performance also increases if blood ketone levels are increased in the absence of ketoacidosis during high-intensity exercise. In a double-blind crossover design, 14 well-trained male cyclists completed a 30-min TT (TT30') followed by an all-out sprint at 175% of lactate threshold (SPRINT). Subjects were randomized to receive (i) 50 g KE, (ii) 180 mg·kg-1 body weight NaHCO3 (BIC), (iii) KE + BIC, or (iv) a control drink (CON). KE ingestion increased blood d-ß-hydroxybutyrate to ~3-4 mM during the TT30' and SPRINT (P < 0.001 vs CON). In KE, blood pH and bicarbonate concomitantly dropped, causing 0.05 units lower pH and 2.6 mM lower bicarbonate in KE compared with CON during the TT30' and SPRINT (P < 0.001 vs CON). BIC coingestion resulted in 0.9 mM higher blood d-ß-hydroxybutyrate (P < 0.001 vs KE) and completely counteracted ketoacidosis during exercise (P > 0.05 vs CON). #link# Mean power output during TT30' was similar between CON and BIC at 281 W, but was 1.5% lower in the KE conditions (main effect of KE P = 0.03). Time to exhaustion in the SPRINT was ~64 s in CON and KE and increased by ~8% in the BIC conditions (main effect of BIC P < 0.01). Neutralization of acid-base disturbance by BIC coingestion is insufficient to counteract the slightly negative effect of KE intake during high-intensity exercise. Neutralization of acid-base disturbance by BIC coingestion is insufficient to counteract the slightly negative effect of KE intake during high-intensity exercise. To compare assessment of collaterals by single-phase computed tomography (CT) angiography (CTA) and CT perfusion-derived 3-phase CTA, multiphase CTA and temporal maximum-intensity projection (tMIP) images to digital subtraction angiography (DSA), and relate collateral assessments to clinical outcome in patients with acute ischemic stroke. Consecutive acute ischemic stroke patients who underwent CT perfusion, CTA, and DSA before thrombectomy with occlusion of the internal carotid artery, the M1 or the M2 segments were included. Two observers assessed all CT images and one separa