Velling Langhoff (songplot7)

However, there is low consistency across the investigated loci in delimiting the different sub-groups, except for a consistent North American group. As for many other widespread fungi, a complex phylogeographic pattern is found in T. abietinum which may have been formed by geographic, as well as multiple genetic intersterility barriers.The ubiquitous freshwater pathogen Saprolegnia parasitica has long been considered a true generalist, capable of infecting a wide range of fish species. It remains unclear, however, whether different isolates of this pathogen, obtained from distinct geographic locations and host species, display differences in host preference. To assess this, the current study examined the induced zoospore encystment responses of four S. parasitica isolates towards the skin of four fish species. While three of the isolates displayed 'specialist' responses, one appeared to be more of a 'generalist'. In vivo challenge infections involving salmon and sea trout with the 'generalist' (salmon isolate EA001) and a 'specialist' (sea trout isolate EA016) pathogen, however, did not support the in vitro findings, with no apparent host preference reflected in infection outcomes. Survival of sea trout and salmon though was significantly different following a challenge infection with the sea trout (EA016) isolate. These results indicate that while S. parasitica isolates can be considered true generalists, they may target hosts to which they have been more frequently exposed (potential local adaptation). Understanding host preference of this pathogen could aid our understanding of infection epidemics and help with the development of fish management procedures.Like other cells, fungal hyphae show exquisite sensitivity to their environment. This reactiveness is demonstrated at many levels, from changes in the form of the hypha resulting from alterations in patterns of exocytosis, to membrane excitation, and mechanisms of wound repair. Growing hyphae detect ridges on surfaces and respond to restrictions in their physical space. These are expressions of cellular consciousness. Fungal mycelia show decision-making and alter their developmental patterns in response to interactions with other organisms. Mycelia may even be capable of spatial recognition and learning coupled with a facility for short-term memory. Now is a fruitful time to recognize the study of fungal ethology as a distinctive discipline within mycology. Strategies for integrating artificial intelligence (AI) into thyroid nodule management require additional development and testing. We developed a deep-learning AI model (ThyNet) to differentiate between malignant tumours and benign thyroid nodules and aimed to investigate how ThyNet could help radiologists improve diagnostic performance and avoid unnecessary fine needle aspiration. ThyNet was developed and trained on 18 049 images of 8339 patients (training set) from two hospitals (the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, and Sun Yat-sen University Cancer Center, Guangzhou, China) and tested on 4305 images of 2775 patients (total test set) from seven hospitals (the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the Guangzhou Army General Hospital, Guangzhou, China; the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the First Affiliatimproved the pooled AUROC of the radiologists from 0·837 (0·832-0·842) when diagnosing without ThyNet to 0·875 (0·871-0·880; p<0·0001) with ThyNet for reviewing images, and from 0·862 (0·851-0·872) to 0·873 (0·863-0·883; p<0·0001) in the clinical test, which used images and videos. In the simulated scenario, the number of fine needle aspirations decreased from 61·9% to 35·2% using the ThyNet-assisted strategy, while missed malignancy decreased from 18·9% to 17·0%. The ThyNet-assist