Becker Mccarthy (songchina46)

LSD1 plays a pivotal role in numerous biological functions. The overexpression of LSD1 is reported to be associated with different malignancies. Over the last decade, LSD1 has emerged as an interesting target for the treatment of acute myeloid leukaemia (AML). Numerous researchers have designed, synthesized, and evaluated various LSD1 inhibitors with diverse chemical architectures. Some of these inhibitors have entered clinical trials and are currently at different phases of clinical evaluation. This comprehensive review enlists recent research developments in LSD1 targeting pharmacophores reported over the last few years.Human African trypanosomiasis is a neglected tropical disease (NTD) that is fatal if left untreated. Although approximately 13 million people live in moderate- to high-risk areas for infection, current treatments are plagued by problems with safety, efficacy, and emerging resistance. In an effort to fill the drug development pipeline for HAT, we have expanded previous work exploring the chemotype represented by the compound NEU-1090, with a particular focus on improvement of absorption, distribution, metabolism and elimination (ADME) properties. These efforts resulted in several compounds with substantially improved aqueous solubility, although these modifications typically resulted in a loss of trypanosomal activity. We herein report the results of our investigation into the antiparasitic activity, toxicity, and ADME properties of this class of compounds in the interest of informing the NTD drug discovery community and avoiding duplication of effort.Unpublished data from our labs led us to hypothesize that activated protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and protease-activated receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized dual-targeting ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these ligands are effective binders of αVβ3 and potent agonists of PAR2. These were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins, though concurrent binding to αVβ3 and PAR2 has not yet been demonstrated.Imidazole-based epidermal growth factor receptor (EGFR) inhibitors were computationally designed and synthesized. All the compounds were assessed for their anti-proliferative activity against five cancer cell lines, viz., MDA-MB-231 (breast), T47D (breast) and MCF-7 (breast), A549 (lung) and HT-29 (colorectal). Compounds 2c and 2d emerged as better anticancer molecules with no toxicity towards normal cells. 2c and 2d inhibited EGFR enzymatic activity in vitro with IC50 values of 617.33 ± 0.04 nM and 710 ± 0.05 nM, respectively. In order to further improve the potency, we explored an unoccupied area of the ATP binding domain of EGFR and analysed an in silico interaction model of 2c and 2d-EGFR complexes that guided and allowed substitution of the 4-fluorophenyl ring (2c and 2d) with 4-(4-methylpiperazinyl)-3-nitrophenyl at the N-9 position, resulting in compound 3c with a better binding score and potent EGFR inhibitory activity (IC50 236.38 ± 0.04 nM), which was comparable to the positive control erlotinib (239.91 ± 0.05 nM). 3c exhibited a great improvement in anticancer potency with inhibition of cell growth of all cancer cell lines at very low micromolar concentrations (IC50 = 1.98 to 4.07 μM). Further investigation revealed that 3c also induced an increase in ROS levels in cancer cells in a mitochondri