Fink Estes (soccertea67)
This method of "second stochasticization" works well where the fluctuations are modest in magnitude as is often encountered in vivo where the number of protein copies in some computations can be in the hundreds to thousands. Simulations using second stochasticization reveal a scaling law that correlates the size of the fluctuations in aggregate size and number with the total number of monomers. This scaling law is confirmed using experimental data. We believe second stochasticization schemes will prove valuable for bridging the gap between in vivo cell biology and detailed modeling. (The code is released on https//github.com/MYTLab/stoch-agg.).An asymmetric synthesis of α-aryl-α-hydroxy-δ-lactams via phase-transfer-catalyzed hydroxylation with molecular oxygen is described. High yields and high enantioselectivities were achieved using 2,2-diarylvinyl group as an achiral auxiliary. This strategy allows facile access to α-aryl-α-hydroxy-δ-lactam derivatives containing a chiral quaternary center.Noninvasive and sensitive thermometry of a single living cell is crucial to the analysis of fundamental cellular processes and applications to cancer diagnosis. Optical fibers decorated with temperature-sensitive nanomaterials have become widely used instruments for biosensing temperature. However, current silica fibers exhibit low compatibility and degradability in biosystems. In this work, we employ spider silks as natural optical fibers to construct biocompatible thermometers. The spider silks were drawn directly from Araneus ventricosus and were decorated with core-shell upconversion nanoparticles (UCNPs) via a photophoretic effect. By measuring the fluorescence spectra of the UCNPs on the spider silks, the membrane temperature of a single breast cancer cell was obtained with absolute and relative sensitivities ranging from 3.3 to 4.5 × 10-3 K-1 and 0.2 to 0.8% K-1, respectively. Additionally, the temperature variation during apoptosis was monitored by the thermometer in real time. This work provides a biocompatible tool for precise biosensing and single-cell analysis.Relativistic density functional theory has been employed to characterize [AnO2(L)]0/-1 complexes, where An = U, Np, Pu, and Am, and L is the recently reported hexa-aza porphyrin analogue, termed dipyriamethyrin, which contains six nitrogen donor atoms (four pyrrolic and two pyridine rings). Shorter axial (An═O) and longer equatorial (An-N) bond lengths are observed when going from AnVI to AnV. The actinide to pyrrole nitrogen bonds are shorter as compared to the bonds to the pyridine nitrogens; the former also play a dominant role in the formation of the actinyl (VI and V) complexes. Natural population analysis shows that the pyrrole nitrogen atoms in all the complexes carry higher negative charges than the pyridine nitrogens. Upon binding actinyl ions with the ligand a significant ligand-to-metal charge transfer takes place in all the actinyl (VI and V) complexes. The formation energy of the actinyl(VI,V) complexes in the gas-phase is found to decrease in the order of UO2L > PuO2L > NpO2L > AmO2L. This trend is consistent with results for the formation of complexes in dichloromethane solution. The calculated ΔG and ΔH values are negative for all the complexes. Energy decomposition analysis (EDA) indicates that the interactions between actinyl(V/VI) and ligand are mainly controlled by electrostatic components over covalent orbital interactions, and the covalent character gradually decreases from U to Am for both pentavalent and hexavalent actinyl complexes.A broad range of N-carbamoylaziridines were obtained and then treated by the diethyl phosphonate anion to afford α-methylene-gem-bisphosphonate aziridines. Study of the reaction's scope and additional experiments indicates that the transformation proceeds via a new mechanism involving the chelation of lithium ion. This last step is crucial for the reaction to occur and disfavors the aziridine ring-opening. A