Kok Faber (skydaisy7)
nt that allows for tracking of progress over time and across countries at the individual and country levels.A study was performed to examine any effect of hen age on the feeding ability and mortality of different life-stages of Dermanyssus gallinae [Poultry Red Mite (PRM)] when fed using a high welfare, on-hen mite feeding device. Samuraciclib Mite feeding assays were carried out every two weeks on a cohort of five Lohman Brown hens with devices containing adult and deutonymph PRM or adult and protonymph PRM. Feeding rates and mortality of each PRM life stage and oviposition of adult female PRM were evaluated over an 18-week period. There was a significant reduction in oviposition rates of female PRM as they fed on hens of increasing age. However, no clear trend was detected between the feeding rates of all three haematophagous life stages and hen age. The same conclusion was reached regarding mite mortality post-feeding in both deutonymph and adult female PRMs, although a weak positive association was apparent between hen age and protonymph PRM mortality. This study shows that the on-hen feeding device can be used both for short term studies to assess novel anti-PRM products (new acaricides, vaccines etc.) and longer, longitudinal studies to determine longevity of the effects of such novel anti-PRM products. It also demonstrates that blood feeding by mites on older hens is less able to sustain PRM populations than feeding on younger hens. This on-hen mite feeding device directly impacts upon reduction and refinement by greatly reducing the numbers of birds required per experimental group compared to traditional PRM challenge infestation models and by eliminating the need for birds to be exposed to large numbers of mites for extended periods of time that can cause welfare concerns. This paper describes the methodology for these studies and how to assemble pouches and handle mites both before and after feeding assays.Passive acoustic monitoring of soundscapes and biodiversity produces vast amounts of audio recordings. However, the management of these raw data presents technical challenges and their analysis suffers from bottlenecks. A multitude of software solutions exist, but none can perform all the data processing needed by ecologists for analysing large acoustic data sets. The field of ecoacoustics needs a software tool that is free, evolving, and accessible. We take a step in that direction and present BioSounds an open-source, online platform for ecoacoustics designed by ecologists and built by software engineers. Biosounds can be used for archiving and sharing recordings, manually creating and reviewing annotations of sonant animals in soundscapes, analysing audio in time and frequency, and storing reference recordings for different taxa. We present its features and structure, and compare it with similar software. We describe its operation mode and the workflow for typical use cases such as the analysis of bird and bat communities sampled in soundscape recordings. BioSounds is available from https//github.com/nperezg/biosounds.We sequenced the genome of the North American groundhog, Marmota monax, also known as the woodchuck. Our sequencing strategy included a combination of short, high-quality Illumina reads plus long reads generated by both Pacific Biosciences and Oxford Nanopore instruments. Assembly of the combined data produced a genome of 2.74 Gbp in total length, with an N50 contig size of 1,094,236 bp. To annotate the genome, we mapped the genes from another M. monax genome and from the closely related Alpine marmot, Marmota marmota, onto our assembly, resulting in 20,559 annotated protein-coding genes and 28,135 transcripts. The genome assembly and annotation are available in GenBank under BioProject PRJNA587092.Background COVID-19 has severely affected university students everywhere in the world. Due to fear of infection, government and local authorities in China immediately closed academic institutions and