Tillman Thuesen (singlenurse67)
The regulation of enzyme activity is a method to control biological function. 3BDO cost We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field.Microbial decomposition of allochthonous plant components imported into the aquatic environment is one of the vital steps of the carbon cycle on earth. To expand the knowledge of the biodegradation of complex plant materials in aquatic environments, we recovered a sunken wood from the bottom of Otsuchi Bay, situated in northeastern Japan in 2012. We isolated Sphingobium with high ferulic acid esterase activity. The strain, designated as OW59, grew on various aromatic compounds and sugars, occurring naturally in terrestrial plants. A genomic study of the strain suggested its role in degrading hemicelluloses. We identified a gene encoding a non-secretory tannase-family α/β hydrolase, which exhibited ferulic acid esterase activity. This enzyme shares the consensus catalytic triad (Ser-His-Asp) within the tannase family block X in the ESTHER database. The molecules, which had the same calculated elemental compositions, were produced consistently in both the enzymatic and microbial degradation of rice straw crude extracts. The non-secretory tannase-family α/β hydrolase activity may confer an important phenotypic feature on the strain to accelerate plant biomass degradation. Our study provides insights into the underlying biodegradation process of terrestrial plant polymers in aquatic environments.Fungi have evolved diverse lifestyles and adopted pivotal new roles in both natural ecosystems and human environments. However, the molecular mechanisms underlying their adaptation to new lifestyles are obscure. Here, we hypothesize that genes shared across all species with the same lifestyle, but absent in genera with alternative lifestyles, are crucial to that lifestyle. By analysing dozens of species within four genera in a fungal order, with each genus following a different lifestyle, we find that genus-specific genes are typically few in number. Notably, not all genus-specific genes appear to derive from de novo birth, with most instead reflecting recurrent loss across the fungi. Importantly, however, a subset of these genus-specific genes are shared by fungi with the same lifestyle in quite different evolutionary orders, thus supporting the view that some genus-specific genes are necessary for specific lifestyles. These lifestyle-specific genes are enriched for key functional classes and often exhibit specialized expression patterns. Genus-specific selection also contributes to lifestyle transitions, and is especially associated with intensity of pathogenesis. Our study, therefore, suggests that fungal adaptation to new lifestyles often requires just a small number of core genes, with gene turnover and positive selection playing complementary roles.Fungi populate deep Oceans in extreme habitats characterized by high hydrostatic pressure, low temperature and absence of sunlight. Marine fungi are potential major contributors to biogeochemical events, critical for marine communities and food web equilibrium under climate change conditions and a v