Woodward Romero (signegypt3)
In order to investigate the pollution characteristics of size-segregated particles and metal elements (MEs) after the Chinese Air Pollution Prevention Action Plan was released in 2013, an intensive field campaign was conducted in the suburban area of Chaoyang District, Beijing in winter 2016. The size distributions of particle mass concentrations were bimodal, with the first peak in the fine fraction (0.4-2.1 µm) and the second peak in the coarse fraction (3.3-5.8 µm). Moreover, the proportion of fine particles increased and the proportion of coarse particles decreased as the pollution level was more elevated. It was found that the composition of coarse particles is as important as that of fine particles when pollution of aerosol metals in the atmosphere in 2016 were compared to 2013. In addition, according to the size distribution characteristics, 23 MEs were divided into three groups (a) Fe, Co, Sr, Al, Ti, Ba, and U, which concentrated in coarse mode; (b) Zn, As, Cd, Tl, and Pb, which concentrated in fine mode; and (c) Na, K, Be, V, Cr, Mn, Ni, Cu, Mo, Ag, and Sn, showing bimodal distribution. Under clean air, slight pollution and moderate pollution conditions, most elements maintained their original size distributions, while under severe pollution, the unimodal distributions of most MEs became bimodal distributions. The factors analysis combined with size distributions indicated that Na, Zn, Mo, Ag, Cd, and Tl, showing the moderate to severe contamination on environment, were significantly influenced by diffuse regional emissions or anthropogenic source emissions (vehicle exhaust emissions and combustion process). The environmental risk assessment revealed that the heavy metal loading in the atmospheric particles collected had a high potential for ecological risk to the environment during sampling period because of the high contribution of Cd, Tl, Zn and Pb.It has been documented that arsenic has a potential risk to human health and identified as a risk factor for hearing impairment. However, there are few studies that confirm the ototoxic effect of arsenic, especially on the human auditory system. Therefore, the current study was conducted to investigate the correlation between auditory thresholds at different frequencies (0.25, 0.5, 1, 2, 4 and 8 kHz) and arsenic levels in drinking water samples. A total of 240 people, divided into two equal groups exposed and reference, were selected for the auditory tests. It should be noted that, at frequencies from 0.25 to 1 kHz, no hearing loss was observed in the both groups. Based on the results, no significant correlations (p > 0.05) were found between hearing thresholds and confounding variables including gender and BMI. However, smoking and age are known to be the main variables for hearing loss in univariate regression analysis. UNC0642 concentration In the case of age, the hearing loss risk in the older participants was increased compared with the younger participants (4 kHz (OR =1.09; 95% CI 1.04, 1.13) and 8 kHz (OR =1.12; 95% CI 1.06, 1.18)). Smoking habits had significant associations with hearing loss risk at 4 kHz (OR = 3.48; 95% CI 1.47, 8.22) and 8 kHz (OR = 3.01; 95% CI 1.14, 7.95). The multivariate regression analysis showed that age, smoking status, and exposure to arsenic were significantly associated with increased risk of hearing loss. Moreover, no statistically significant correlation (p˃0.05) was observed between arsenic exposure and hearing loss in the logistic regression model compared to the reference group. These outcomes suggest that further investigation and cohort studies with a larger number of participants should be conducted to find an association between arsenic exposure and hearing loss in general population.Antibiotics are essential for treatments of bacterial infection and play important roles in the fields of aquaculture and animal husbandry. Antibiotics are accumulated in water and soil due to the excessive consumption and incomplete tre