Hammond Smidt (shrinedoctor72)

Mercury and its derivates cause distinct toxicity and it is detrimental to the ecosystem where the excessive concentration contributes towards the environmental pollutants. The current study reported a colorimetric method for the detection of Hg(II) ion with high specificity and selectivity using Ag-Ce nanocomposite (NC) functionalized by 3-(Trimethoxysilyl) propyl methacrylate. The synthesized Ag-Ce NC was characterized by using double beam UV-visible spectrophotometer, zeta sizer, EDS, TEM, FT-IR, XRD and particle size analyzer. The synthesized particle possessed an average particle size of 27 ± 1 nm and zeta potential of -39.32 ± 3 mV. The brownish yellow colored Ag-Ce NC changed to colorless in presence of Hg(II) where the colorimetric detection was extremely specific and superior towards Hg(II) ion on comparing the tests with other metal ions. Ras inhibitor An excellent linear correlation was observed between absorbance (395 nm) and Hg(II) concentrations (1 nM-10 μM) (R2 = 0.988) with LOD of 0.03 nM. A cotton swab based probe was prepared for selective, elegant and low cost colorimetric method to detect Hg(II). The parametric study was performed for optimizing the suitable condition. The colorimetric probe developed by this study for Hg(II) detection using Ag-Ce NC shows excellent practical applicability.Photochromic compounds are well-known for their promising applications in many areas. It attracts remarkable attention because of their potential ability for optical memory media and optical switching devices. Herein, we have synthesized azo-based benzimidazole ligand and their transition metal complexes for photochromic applications in the liquid state. The azo-based benzimidazole ligand exhibits trans-to-cis photoisomerization with highly tunable and excellent π-π* and n-π* band separation of ligand, whereas complexes show light-induced photo-dissociation as well as trans-to-cis photoisomerization of the ligand part. The reverse cis-to-trans isomerization can be driven by without using light or any external stimuli at room temperature by keeping the system in the dark condition.Plastic materials are increasingly becoming part of private and public collections worldwide, either as design objects or artistic sculptures. The preservation of these highly degradable materials requires novel analytical approaches able to reveal their chemical composition to inform the tailoring of appropriate conservation procedures. In this work Raman spectroscopy and Surface-enhanced Raman Scattering (SERS) were proposed as methods for the characterization of ABS-based contemporary and historical LEGO® objects. Twenty-three objects of twelve different colors were analyzed by handheld and benchtop Raman instrumentation. In all cases clear identification of the constituent polymer matrices (ABS, polycarbonate, poly(methyl metacrylate)) was obtained. In addition, identification of major color components was achieved, such as copper phthalocyanines in green and blue objects. Low cost handheld instrumentation provided acceptable sensitivity towards polymers and coloring media, and was found suitable for initial screening of the objects. Benchtop Raman was used to confirm and further extend identification, as well as for building background information. Finally, SERS sensitivity was found comparable to the sensitivity achieved by benchtop Raman instrumentation. However, the associated minimally-invasive sampling method made SERS a valid alternative to direct Raman spectroscopy for the analysis of immovable and/or large-sized objects. Overall, this work represents the first systematic investigation on the potential of Raman and SERS spectroscopies as methods for minimal invasive and/or in situ analysis of historical and contemporary plastic objects.Functionally important, local structural transitions in DNA generate various alternative conformations. Cruciform is one of such alternative DNA structures, usually targeted in genomes by various pr