Grace Jonsson (shrinearm14)
MBOAT7 deletion in hepatocytes reduced the incorporation of arachidonic acid into phosphatidylinositol, consistently with decreased enzymatic activity, determining the accumulation of saturated triglycerides, enhanced lipogenesis and FATP1 expression, while FATP1 deletion rescued the phenotype. INTERPRETATION MBOAT7 down-regulation by hyper-insulinemia contributes to hepatic fat accumulation, impairing phosphatidylinositol remodelling and up-regulating FATP1. FUNDING LV was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016-02,364,358, Ricerca corrente Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; LV and AG received funding from the European Union Programme Horizon 2020 (No. 777,377) for the project LITMUS-"Liver Investigation Testing Marker Utility in Steatohepatitis". MM was supported by Fondazione Italiana per lo Studio del Fegato (AISF) 'Mario Coppo' fellowship. BACKGROUND Alteration of commensal bacterial composition is associated with many inflammatory diseases. However, few studies have pinpointed the specific bacterial genes that may suppress host immune responses against microbes and maintain homeostasis in the host intestine. METHODS High-throughput screening was performed in Caenorhabditis elegans with a single gene knockout ut screening was performed in Caenorhabditis elegans with a single gene knockout Escherichia coli (E. coli) library and identified the immune suppression gene blc. The coding sequences of blc among different kinds of E. coli strains were aligned to identify the single nucleotide polymorphisms (SNPs). Physiological and biochemical experiments were performed in C. elegans and mice to explore the function of the blc variant. FINDINGS By screening 3983 E. coli mutants, we discovered that 9 bacterial genes, when deleted, activate innate immunity in the host C. elegans. selleck chemicals llc Among these 9 genes, the gene encoding blc showed a distinctive SNP in many u Province. BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that down-regulates hepatic low-density lipoprotein receptor (LDLR) by binding and shuttling LDLR to lysosomes for degradation. The development of therapy that inhibits PCSK9 has attracted considerable attention for the management of cardiovascular disease risk. However, only monoclonal antibodies of PCSK9 have reached the clinic use. Oral administration of small-molecule transcriptional inhibitors has the potential to become a therapeutic option. METHODS Here, we developed a cell-based small molecule screening platform to identify transcriptional inhibitors of PCSK9. Through high-throughput screening and a series of evaluation, we found several active compounds. After detailed investigation on the pharmacological effect and molecular mechanistic characterization, 7030B-C5 was identified as a potential small-molecule PCSK9 inhibitor. FINDINGS Our data showed that 7030B-C5 down-regulated PCSK9 expression and increased the to2018ZX09711001-003-006, 2018ZX09711001-007 and 2018ZX09735001-002), CAMS Innovation Fund for Medical Sciences (2016-I2M-2-002, 2016-I2M-1-011 and 2017-I2M-1-008), Beijing Natural Science Foundation (7162129). During the population representative German Environmental Survey of Children and Adolescents (GerES V, 2014-2017) 2256 first-morning void urine samples from 3 to 17 years old children and adolescents were analysed for 21 metabolites of 11 different phthalates (di-methyl phthalate (DMP), di-ethyl phthalate (DEP), butylbenzyl phthalate (BBzP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di-cyclohexyl phthalate (DCHP), di-n-pentyl phthalate (DnPeP), di-(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP), di-iso-decyl phthalate (DiDP) and di-n-octyl phthalate (DnOP)). Metabolites of DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP and DiDP were found in 97%-100% of the participants, DCHP and DnPeP in 6%, and DnOP in none of the urine samples. Geomet