Nunez Travis (shareswamp5)
Pyruvate treatment altered ETC complex expression, reduced the nitrosyl stress and the MBP expression in the injured brain area, but increased the expression of the glial fibrillary acidic protein (GFAP) and Tau proteins. Pyruvate after mTBI augmented the Rotarod performance but decreased the horizontal and vertical open field locomotion activities and worsened neurobehavioural severity score, indicating a debilitating therapeutic effect on the acute phase of mTBI. These results suggest bidirectional neuroprotective and neurodegenerative modulating effects of pyruvate on TBI-induced alteration in mitochondrial activity and motor behavior. Pyruvate could potentially stimulate the proliferation of astrogliosis, and lactate acidosis, and caution should be exercised when used as a therapy in the acute phase of mTBI. More effective interventions targeted at multiple mechanisms are needed for the prevention and treatment of TBI-induced long-term neurodegeneration.Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a central regulator of cellular stress responses and its transcriptional activation promotes multiple cellular defense and survival mechanisms. The loss of NRF2 has been shown to increase oxidative and proteotoxic stress, two key pathological features of neurodegenerative disorders such as Parkinson's disease (PD). Moreover, compromised redox homeostasis and protein quality control can cause the accumulation of pathogenic proteins, including alpha-synuclein (α-Syn) which plays a key role in PD. However, despite this link, the precise mechanisms by which NRF2 may regulate PD pathology is not clear. In this study, we generated a humanized mouse model to study the importance of NRF2 in the context of α-Syn-driven neuropathology in PD. Specifically, we developed NRF2 knockout and wild-type mice that overexpress human α-Syn (hα-Syn+/Nrf2-/- and hα-Syn+/Nrf2+/+ respectively) and tested changes in their behavior through nest building, challenging beam, and open fmental to PD pathogenesis and suggests that targeting NRF2 activation may delay the onset and progression of PD.Dementia is a complex syndrome with various presentations depending on the underlying pathologies. Low emission of transcranial near-infrared (tNIR) light can reach human brain parenchyma and be beneficial to a number of neurological and neurodegenerative disorders. We hereby examined the safety and potential therapeutic benefits of tNIR light stimulations in the treatment of dementia. Patients of mild to moderate dementia were randomized into active and sham treatment groups at 21 ratio. Active treatment consisted of low power tNIR light stimulations with an active photobiomodulation for 6 min twice daily during 8 consequent weeks. Sham treatment consisted of same treatment routine with a sham device. Neuropsychological battery was obtained before and after treatment. Analysis of variance (ANOVA) was used to analyze outcomes. Sixty subjects were enrolled. Fifty-seven subjects completed the study and had not reported health or adverse side effects during or after the treatment. Three subjects dropped out from trial for health issues unrelated to use of tNIR light treatment. Treatment with active device resulted in improvements of cognitive functions and changes were an average increase of MMSE by 4.8 points; Logical Memory Tests I and II by ~3.0 points; Trail Making Tests A and B by ~24%; Boston Naming Test by ~9%; improvement of both Auditory Verbal Learning Tests in all subtest categories and overall time of performance. Many patients reported improved sleep after ~7 days of treatment. Caregivers noted that patients had less anxiety, improved mood, energy, and positive daily routine after ~14-21 days of treatment. The tNIR light treatments demonstrated safety and positive cognitive improvements in patients with dementia. Developed treatment protocol can be conveniently used at home. This study suggests that additional dementia treatment trials are warrante