Hendrix Palm (shapewax1)

We exploit the fluoride that is released via the para-fluoro-thiol reaction (PFTR) to cleave silyl ethers, turning the PFTR into an effective self-reporting chemiluminescence (CL) probe. The cleavage induces chemiluminescence and hence provides an optical read-out for the conversion of the PFTR. The PFTR chemiluminescence read-out is established on small molecule thiols, and subsequently expanded to polymers and networks.The water oxidation reaction is the pivotal half-reaction for photo-/electro-catalytic water splitting. Fabrication of high-efficiency and robust water oxidation is essential to realize wide-scale artificial photosynthesis. Here, we report an efficient strategy to improve the water oxidation activity of iridium oxide by a nitrogen-coordination method. Due to the coordination effect, the iridium oxide can be well dispersed to generate ultra-small nanoparticles and the intrinsic activity can be improved for the water oxidation reaction. This study suggests that high-performance water oxidation catalysts can be constructed based on a nitrogen-coordination strategy.Drug-eluting stents have demonstrated efficiency in in-stent restenosis (ISR) but induced a risk of late acute thrombosis by delaying strut re-endothelialization. Polydopamine (PDA), a biocompatible polymer inspired from adhesive proteins of mussels, has been reported to promote endothelial cell (EC) proliferation while limiting SMC proliferation in vitro, thus suggesting the pro-healing potential. This study aimed at evaluating in vivo the impact of the pro-healing PDA-coated stent on ISR and on the quality of the strut re-endothelialization in a rat model. PDA-coated stents demonstrated a significant reduction in ISR in vivo compared to bare metal stents (ratio neointima/media = 0.48 (±0.26) versus 0.83 (±0.42), p less then 0.001). Western blot analyses identified a trend towards an increased activation of p38 MAPK phosphorylation and its anti-proliferative effects on vascular SMC that could explain the results observed in morphological analyses. This bioinspired and biocompatible polydopamine layer could intrinsically limit ISR. In addition, according to its latent reactivity, PDA offers the possibility to immobilize some relevant drugs on the PDA-functionalized stent to provide potential synergistic effects.Mammalian cell culture processes were characterized upon the analysis of the exhaust-gas composition achieved through the on-line integration of a magnetic sector MS analyser with benchtop bioreactors. The non-invasive configuration of the magnetic sector MS provided continuous evaluation of the bioreactor's exhaust gas filter integrity and facilitated the accurate quantification of O2 and CO2 levels in the off-gas stream which ensured preserved bioreactor sterility prior to cell inoculation and provided evidence of the ongoing cellular respiratory activity throughout the cultures. Real-time determination of process parameters such as the Respiratory Quotient (RQ) allowed for precise pin-pointing of the occurrence of shifts in cellular metabolism which were correlated to depletion of key nutrients in the growth medium, demonstrating the suitability of this technology for tracking cell culture process performance.Polymer networks with hydrophilic dangling chains are ideal candidates for many submerged applications, e.g., protein non-adhesive coatings with non-fouling behavior. The dangling chains segregate from the polymer network towards the water and form a brush-like structure at the interface. NVP-TNKS656 ic50 Several factors such as the polymer network structure, dangling chain length, and water/dangling chain interaction may all affect the interfacial performance of the polymer. Therefore, we employed a Martini based coarse-grained (CG) molecular dynamics (MD) simulation to elucidate the influences of the abovementioned parameters on dangling chain interfacial segregation. We built up several polyurethane (PU) networks based on poly(tetr