Winkel Allred (shakenancy4)
Using AP staining with extended reaction time, which may not label all oxytocin neurons, we confirmed many innervation targets of oxytocin neurons from the anterior olfactory nucleus, some cortex regions, the limbic system, the hypothalamus, and the hindbrain, while the cell bodies were exclusively located in the hypothalamus and the bed nucleus of the stria terminalis. Finally, we observe some individual variance at the olfactory area, isocortex, striatum, paraventricular nucleus of thalamus, locus coeruleus, and Barrington's nucleus.The mouse is the most important animal model within neuroscientific research, a position strengthened by the wide-spread use of transgenic mouse models. Discoveries in animals are followed by corroboration in humans, and the interchange between these fields of research is essential to our understanding of the human brain. With the advent of advanced technologies such as single-cell transcriptomics, epigenetic profiling and diffusion MRI, many prominent research institutes and collaborations have emerged, aiming to construct complete human or mouse brain atlases with data on gene expression, connectivity and cell types. These initiatives are indispensable resources, but frequently require extensive, time-consuming development, and rely on updates by the provider. They often come in the shape of applications which require practice or prior technical know-how. Importantly, none of them place the human and the mouse brain next to each other to allow for immediate comparison. We present BrainWiki, a user-friendly, web-based atlas that links the human and the mouse brain together, side-by-side. The platform gives the user a simple overview of brain anatomy along with published articles relating to each brain region that allows the user to delve deeper into the current state of research concerning circuitry, brain functions and pathology. The website relies on interactivity and supports user contributions resulting in a dynamic website that evolves at the pace of neuroscience. It is designed to allow for constant updates and new features in the future which will contain data such as gene expression and neuronal cell types.Certain sensory receptors contain many transducers, converging onto few afferents. Convergence creates star-topology neural networks, of iterative parallel organization, that may yield special functional properties. We quantitated large-scale convergence in electroreceptors on the rostrum of preadult paddlefish, Polyodon spathula (Acipenseriforme vertebrates), and analyzed the afferent terminal branching underlying the convergence. From neurophysiological mapping, a recorded afferent innervated 23.3 ± 9.1 (range 6-45) ampullary organs, and innervated every ampullary organ within the receptive field's sharp boundary. see more Ampullary organs each contained ∼665 Lorenzinian receptor cells, from imaging and modeling. We imaged three serial types of afferent branching at electroreceptors, after immunofluorescent labeling for neurite filaments, glial sheaths, or nodal ion channels, or by DiI tracing. (i) Myelinated tree Each of 3.08 ± 0.51 (2-4) parallel afferents from a cranial nerve (ALLn) entered a receptive field fromd from thicker (∼2 micron) basolateral trunks. Overall, an average Polyodon electroreceptor formed a star topology array of ∼9 sensor groups. Total convergence ratios were 15,495 ± 6,052 parallel receptor cells per afferent per mean receptive field, assuming 100% innervation. Large-scale convergence likely increases the signal-to-noise ratio (SNR) of stimulus encoding into spiking afferent output, increasing receiver sensitivity. Unmyelinated arbors may also regenerate and repair the afferent innervation of ampullary organs. LSID urnlsidzoobank.orgact09BCF04C-3C3C-4B6C-9DC9-A2BF43087369.Corticofugal modulation of auditory responses in subcortical nuclei has been extensively studied whereas corticofugal synaptic transmission must still be characterized. This study exami