McFarland Frisk (shadeperiod43)

Additionally, the presence of Si-H bonds in the precursor structure allows formation of SiOxNy films at temperatures lower than those required by other conventional silazane/silanamine precursors. Addition of NH3 in the inlet gas supply results in lower carbon impurities in the films. The identified by-products and formulated decomposition and gas-phase reactions provide stimulating insight and understanding of the deposition mechanism of SiOxNy films by CVD, offering possibilities for the investigation of representative chemical models and process simulation.Aqueous glycerol was used in this study as a liquid-phase hydrogen source for the hydrogenation of CO2. It was found that hydrogen could be efficiently evolved from aqueous glycerol upon highly dispersed Ru on layered double hydroxide (LDH), inducing the transformation of CO2 into formaldehyde under base-free conditions at low temperature.Hexagonal boron nitride (h-BN) nanostructures are well-known for their good chemical stability, thermal conductivity and high elastic modulus. BN can be used as a filler in hydrogels to significantly improve their mechanical and thermal properties, to reinforce their biocompatibility and to provide self-healing capacity. Moreover, in contrast with their carbon equivalents, BN nanocomposites are transparent and electrically insulating. Herein, we present an overview of BN-based nanocomposite hydrogels. First, the properties of h-BN are described, as well as common exfoliation and functionalization techniques employed to obtain BN nanosheets. Then, methods for preparing BN-nanocomposite hydrogels are explained, followed by a specific overview of the relationship between the composition and structure of the nanocomposites and the functional properties. Finally, the main properties of these materials are discussed in view of the thermal, mechanical, and self-healing properties, along with the potential applications in tissue engineering, thermal management, drug delivery and water treatment.Designing devices with excellent spin-polarized properties has been a challenge in physics and materials science. In this work, we report a theoretical investigation of the spin injection and spin-polarized transport properties of monolayer and bilayer phosphorene devices with Co electrodes. Based on the analysis of transmission coefficients, spin-polarized current, magnetoresistance (MR) (or tunnel MR) ratio and spin injection efficiency (SIE), both devices show superior spin-polarized transport properties. As phosphorene in the device is changed from monolayer to bilayer, the charge carrier type can be tuned from n-type to p-type. For the monolayer phosphorene device, the tunnel MR ratio reaches about 210% and the SIE is about 80.7% at zero bias. Notably, the SIE and tunnel MR ratio maintain almost constant values against bias voltage and gate voltage, which makes it suitable for magnetic sensors. As for the bilayer phosphorene device, it not only exhibits a considerable tunnel MR ratio, but also shows significantly enhanced conductance, beneficial to the sensitivity of spintronic devices. Further analysis shows that the improvement of conductance is attributed to the low barrier height between the bilayer phosphorene channel and Co electrodes. KRas(G12C)inhibitor9 According to our results, the studied phosphorene devices with Co electrodes demonstrate superior spin injection and transport properties. We believe that these theoretical findings will be a strong asset for future experimental works in spintronics.The heterogeneous gold(i)-catalyzed oxidative ring expansion of alkynyl quinols has been achieved by using a benzyldiphenylphosphine-modified MCM-41-immobilized gold(i) complex [MCM-41-BnPh2P-AuNTf2] as the catalyst and 8-methylquinoline N-oxide as the oxidant under mild reaction conditions, yielding a variety of functionalized tropone derivatives in good to excellent yields. Extension of this methodology allows for facile construction of othe