Bundgaard Isaksen (screwrabbit40)
Carya cathayensis is a commercially cultivated plant in the Zhejiang Province, China. Its nuts exhibit properties of tonifying kidneys and relieving asthma. There have been a few pharmacological studies addressing the function of the leaves of this plant. Our previous studies on C. cathayensis leaf extract (CCE) showed a significant inhibitory effect on weight gain in mice fed a high-fat diet, particularly in female mice. To investigate the biological and molecular mechanisms underlying the regulation of ectopic adipose tissue deposition by CCE in ovariectomized rats fed a high-fat diet. Female Sprague-Dawley rats were ovariectomized and treated with CCE (50, 100, and 200mg/kg body weight, oral) or estradiol (1mg/kg body weight, oral) for 8 weeks. CCE was subjected to high-performance liquid chromatography to quantify major components. Body weight gain, abdominal fat coefficient, and aortic arch fat coefficient were determined; serum was collected for biochemical analysis; tissues were collected for s in abdominal adipose tissue were significantly down-regulated. Adiponectin mRNA levels were slightly reduced but not significantly. CCE attenuated ectopic fat deposition induced by deficient estrogen and a high-fat diet in rats; this may be associated with activated leptin sensitivity, improved leptin resistance, and regulated adiponectin levels. CCE may improve adipose function to regulate adipocyte differentiation by down-regulating PPARγ. Overall, these results suggest that CCE is a potential phytoestrogen. CCE attenuated ectopic fat deposition induced by deficient estrogen and a high-fat diet in rats; this may be associated with activated leptin sensitivity, improved leptin resistance, and regulated adiponectin levels. CCE may improve adipose function to regulate adipocyte differentiation by down-regulating PPARγ. Overall, these results suggest that CCE is a potential phytoestrogen. The enhancement of energy expenditure has attracted attention as a therapeutic target for the management of body weight. Withaferin A (WFA), a major constituent of Withania somnifera extract, has been reported to possess anti-obesity properties, however the underlying mechanism remains unknown. To investigate whether WFA exerts anti-obesity effects via increased energy expenditure, and if so, to characterize the underlying pathway. C57BL/6J mice were fed a high-fat diet (HFD) for 10 weeks, and WFA was orally administered for 7 days. The oxygen consumption rate of mice was measured at 9 weeks using an OxyletPro™ system. Hematoxylin and eosin (H&E), immunohistochemistry, immunoblotting, and real-time PCR methods were used. Treatment with WFA ameliorated HFD-induced obesity by increasing energy expenditure by improving of mitochondrial activity in brown adipose tissue (BAT) and promotion of subcutaneous white adipose tissue (scWAT) browning via increasing uncoupling protein 1 levels. WFA administration also significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the BAT of obese mice. Additionally, WFA activated mitogen-activated protein kinase (MAPK) signaling, including p38/extracellular signal-regulated kinase MAPK, in both BAT and scWAT. WFA enhances energy expenditure and ameliorates obesity via the induction of AMPK and activating p38/extracellular signal-regulated kinase MAPK, which triggers mitochondrial biogenesis and browning-related gene expression. WFA enhances energy expenditure and ameliorates obesity via the induction of AMPK and activating p38/extracellular signal-regulated kinase MAPK, which triggers mitochondrial biogenesis and browning-related gene expression.A persistent ultrasound-assisted hydrothermal method has been developed to prepare cobalt oxide incorporated nitrogen-doped graphene (Co3O4/N-GO) hybrids. The electrochemical behaviors and catalytic activity of the prepared hybrids