Wichmann Pike (scentinch84)
inical investigation.Leaf senescence can be triggered by multiple abiotic stresses including darkness, nutrient limitation, salinity, and drought. Recently, heatwaves have been occurring more frequently, and they dramatically affect plant growth and development. However, the underlying molecular networks of heat stress-induced leaf senescence remain largely uncharacterized. Here we showed that PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 proteins could efficiently promote heat stress-induced leaf senescence in Arabidopsis. Transcriptomic profiling analysis revealed that PIF4 and PIF5 are likely to function through multiple biological processes including hormone signaling pathways. Further, we characterized NAC019, SAG113, and IAA29 as direct transcriptional targets of PIF4 and PIF5. The transcription of NAC019, SAG113, and IAA29 changes significantly in daytime after heat treatment. In addition, we demonstrated that PIF4 and PIF5 proteins were accumulated during the recovery after heat treatment. Moreover, we showed that heat stress-induced leaf senescence is gated by the circadian clock, and plants might be more actively responsive to heat stress-induced senescence during the day. Taken together, our findings proposed important roles for PIF4 and PIF5 in mediating heat stress-induced leaf senescence, which may help to fully illustrate the molecular network of heat stress-induced leaf senescence in higher plants and facilitate the generation of heat stress-tolerant crops. Fourier ptychographic microscopy (FPM) is a computational microscopy technique that enables large field of view and high-resolution microscopic imaging of biological samples. However, the FPM does not yet have an adequately capable open-source software. In order to fill this gap we are presenting novel, simple, universal, semi-automatic and highly intuitive graphical user interface (GUI) open-source application called the FPM app enabling wide-scale robust FPM reconstruction. Apart from implementing the FPM in accessible GUI app, we also made several improvements in the FPM image reconstruction process itself, making the FPM more automatic, noise-robust and faster. FPM app was implemented in MATLAB and all MATLAB codes along with standalone executable version of the FPM app and the online documentation are freely accessible at https//github.com/MRogalski96/FPM-app. Our exemplary FPM datasets may be downloaded at https//bit.ly/2MxNpGb. Supplementary data are available at Bioinformatics online. Supplementary data are available at Bioinformatics online. Genome Architecture Mapping (GAM) was recently introduced as a digestion- and ligation-free method to detect chromatin conformation. Orthogonal to existing approaches based on chromatin conformation capture (3C), GAM's ability to capture both inter- and intra-chromosomal contacts from low amounts of input data makes it particularly well suited for allele-specific analyses in a clinical setting. Allele-specific analyses are powerful tools to investigate the effects of genetic variants on many cellular phenotypes including chromatin conformation, but require the haplotypes of the individuals under study to be known a-priori. So far however, no algorithm exists for haplotype reconstruction and phasing of genetic variants from GAM data, hindering the allele-specific analysis of chromatin contact points in non-model organisms or individuals with unknown haplotypes. We present GAMIBHEAR, a tool for accurate haplotype reconstruction from GAM data. GAMIBHEAR aggregates allelic co-observation frequencies from GAM data and employs a GAM-specific probabilistic model of haplotype capture to optimise phasing accuracy. Using a hybrid mouse embryonic stem cell line with known haplotype structure as a benchmark dataset, we assess correctness and completeness of the reconstructed haplotypes, and demonstrate the power of GAMIBHEAR to infer accurate genome-wide haplotypes f