Randall Goodman (sailjute40)

Today's Virtual Reality (VR) displays are dramatically better than the head-worn displays offered 30 years ago, but today's displays remain nearly as bulky as their predecessors in the 1980's. Also, almost all consumer VR displays today provide 90-110 degrees field of view (FOV), which is much smaller than the human visual system's FOV which extends beyond 180 degrees horizontally. learn more In this paper, we propose ThinVR as a new approach to simultaneously address the bulk and limited FOV of head-worn VR displays. ThinVR enables a head-worn VR display to provide 180 degrees horizontal FOV in a thin, compact form factor. Our approach is to replace traditional large optics with a curved microlens array of custom-designed heterogeneous lenslets and place these in front of a curved display. We found that heterogeneous optics were crucial to make this approach work, since over a wide FOV, many lenslets are viewed off the central axis. We developed a custom optimizer for designing custom heterogeneous lenslets to ensure a sufficient eyebox while reducing distortions. The contribution includes an analysis of the design space for curved microlens arrays, implementation of physical prototypes, and an assessment of the image quality, eyebox, FOV, reduction in volume and pupil swim distortion. To our knowledge, this is the first work to demonstrate and analyze the potential for curved, heterogeneous microlens arrays to enable compact, wide FOV head-worn VR displays.The core idea in an XR (VR/MR/AR) application is to digitally stimulate one or more sensory systems (e.g. visual, auditory, olfactory) of the human user in an interactive way to achieve an immersive experience. Since the early 2000s biologists have been using Virtual Environments (VE) to investigate the mechanisms of behavior in non-human animals including insects, fish, and mammals. VEs have become reliable tools for studying vision, cognition, and sensory-motor control in animals. In turn, the knowledge gained from studying such behaviors can be harnessed by researchers designing biologically inspired robots, smart sensors, and multi-agent artificial intelligence. VE for animals is becoming a widely used application of XR technology but such applications have not previously been reported in the technical literature related to XR. Biologists and computer scientists can benefit greatly from deepening interdisciplinary research in this emerging field and together we can develop new methods for conducting fundamental research in behavioral sciences and engineering. To support our argument we present this review which provides an overview of animal behavior experiments conducted in virtual environments.Understanding the effects of hand proximity to objects and tasks is critical for hand-held and near-hand objects. Even though self-avatars have been shown to be beneficial for various tasks in virtual environments, little research has investigated the effect of avatar hand proximity on working memory. This paper presents a between-participants user study investigating the effects of self-avatars and physical hand proximity on a common working memory task, the Stroop interference task. Results show that participants felt embodied when a self-avatar was in the scene, and that the subjective level of embodiment decreased when a participant's hands were not collocated with the avatar's hands. Furthermore, a participant's physical hand placement was significantly related to Stroop interference proximal hands produced a significant increase in accuracy compared to non-proximal hands. Surprisingly, Stroop interference was not mediated by the existence of a self-avatar or level of embodiment.Directivity and gain in microphone array systems for hearing aids or hearable devices allow users to acoustically enhance the information of a source of interest. This source is usually positioned directly in front. This feature is called acoustic beamforming. The current study aimed to improve