Yildirim Daniels (roadgate6)
d in prospective, randomized, double-blind settings, also using minimally invasive but objective and quantitative evaluation methods.Co-anaerobic fermentation (co-AF) of swine manure (SM) and apple waste (AW) has been proved to be beneficial for lactic acid (LA) production. In order to further improve the LA production, three important parameters, namely AW in feedstock, temperature, volatile solids (VS) of feedstock, were evaluated using Box-Behnken design and response surface methodology. The quadratic regression model was developed and interactive effects was found between the three parameters. Results showed that the maximum concentration, 31.18 g LA/L (with LA yield of 0.62 g/g VS), was obtained under optimum conditions of 60.4% AW in feedstock, 34.7 ℃, and 5.0% VS. At the optimum conditions, the solubilization of organic matter was enhanced compared with mono-fermentation of SM. Microbial community structure of the reactor diverged greatly with fermentation time. Clostridium and Lactobacillus were dominant bacteria in the fermentation process, resulting in a remarkably LA accumulation.In this study, the joint effects of widely used copper oxide nanoparticles (CuO NPs) and multi-walled carbon nanotubes (MWCNTs) on the fermentation metabolism of a model acetogenic bacterium Saccharofermentans acetigenes were investigated and the underlying mechanisms were further explored. The presence of sole CuO NPs or MWCNTs severely inhibited the acetate generation, while their co-existences did not further decrease the acetate yield as expected. Further analysis indicated the joint effects facilitated the enhancement of bacterial stimulus response to the environment and interspecies communication, which improved adaptive capacity to the adverse environment involved in nanomaterials. Meanwhile, the co-existence reduced inhibitory effects of sole nanomaterial on the gene expressions and catalytic activities of key enzymes involved in glycolysis and pyruvate metabolism. Therefore, the joint effects could enhance environmental adaptation of S. acetigenes and transcriptional expressions of key enzymes for acetic acid production-related processes, alleviating the inhibition of CuO NPs to acetate production.A pilot scale anaerobic degradation of sugarcane vinasse was carried out at various hydraulic retention time (HRT) in the Anaerobic Suspended Growth Closed Bioreactor (ASGCB) under thermophilic temperature. The performance and kinetics were evaluated through the Haldane-Andrews model to investigate the substrate inhibition potential of sugarcane vinasse. All parameters show great performance between HRT 35 and 25 days chemical oxygen demand (COD) reduction efficiency (81.6 to 86.8%), volatile fatty acids (VFA) reduction efficiency (92.4 to 98.5%), maximum methane yield (70%) and maximum biogas production (19.35 L/day). Furthermore, steady state values from various HRT were obtained in the kinetic evaluation for rXmax (1.20 /day), Ks (19.95 gCOD/L), Ki (7.00 gCOD/L) and [Formula see text] (0.33 LCH4/gCOD reduction). selleck compound This study shows that anaerobic degradation of sugarcane vinasse through ASGCB could perform well at high HRT and provides a low degree of substrate inhibition as compared to existing studies from literature.In this study, a hybrid process of dark fermentation (DF) and microbial fuel cell (MFC), sDFMFC, was investigated for simultaneous H2 and electricity production from Saccharina japonica in a single reactor. The sDFMFC exhibited a considerably enhanced energy recovery owing to simultaneous H2/carboxylic acids (CAs) production by DF and electricity production by MFC consuming CAs. The co-production of H2 and electricity was confirmed by a time course of CAs concentration in sDFMFC. An excellent energy recovery of 17.3% was obtained from S. japonica with H2 yield of 110 mL/g-VS and maximum power density of 1.82 W/m2. The sDFMFC showed a diverse microbial community for a desirable microbial conversion of or