Post Maloney (riseyoke97)

Accumulating, converging evidence indicates that the anterior temporal lobe (ATL) appears to be the transmodal hub for semantic representation. A series of repetitive transcranial magnetic stimulation (rTMS) investigations utilizing the 'virtual lesion' approach have established the brain-behavioural relationship between the ATL and semantic processing by demonstrating that inhibitory rTMS over the ATL induced impairments in semantic performance in healthy individuals. However, a growing body of rTMS studies suggest that rTMS might also be a tool for cognitive enhancement and rehabilitation, though there has been no previous exploration in semantic cognition. Here, we explored a potential role of rTMS in enhancing and inhibiting semantic performance with contrastive rTMS protocols (1 Hz vs. 20 Hz) by controlling practice effects. Twenty-one healthy participants were recruited and performed an object category judgement task and a pattern matching task serving as a control task before and after the stimulation over the ATL (1 Hz, 20 Hz, and sham). A task familiarization procedure was performed prior to the experiment in order to establish a 'stable baseline' prior to stimulation and thus minimize practice effect. Our results demonstrated that it is possible to modulate semantic performance positively or negatively depending on the ATL stimulation frequency 20 Hz rTMS was optimal for facilitating cortical processing (faster RT in a semantic task) contrasting with diminished semantic performance after 1 Hz rTMS. In addition to cementing the importance of the ATL to semantic representation, our findings suggest that 20 Hz rTMS leads to semantic enhancement in healthy individuals and potentially could be used for patients with semantic impairments as a therapeutic tool.The auditory steady-state response (ASSR) is an oscillatory brain response generated by periodic auditory stimuli and originates mainly from the temporal auditory cortices. Recent data show that while the auditory cortices are indeed strongly activated by the stimulus when it is present (ON ASSR), the anatomical distribution of ASSR sources involves also parietal and frontal cortices, indicating that the ASSR is a more complex phenomenon than previously believed. Furthermore, while the ASSR typically continues to oscillate even after the stimulus has stopped (OFF ASSR), very little is known about the characteristics of the OFF ASSR and how it compares to the ON ASSR. Here, we assessed whether the OFF and ON ASSR powers are modulated by the stimulus properties (i.e. volume and pitch), selective attention, as well as individual musical sophistication. We also investigated the cortical source distribution of the OFF ASSR using a melody tracking task, in which attention was directed between uniquely amplitude-modal, temporal, parietal and insular lobes. Finally, the ON ASSR proved sensitive to musicality, demonstrating positive correlations between musical sophistication and ASSR power, as well as with the degree of attentional ASSR modulation at the left and right parietal cortices. Taken together, these results show new aspects of the ASSR response, and demonstrate its usefulness as an effective tool for analysing how selective attention interacts with individual abilities in music perception.Multiband acquisition, also called simultaneous multislice, has become a popular technique in resting-state functional connectivity studies. Multiband (MB) acceleration leads to a higher temporal resolution but also leads to spatially heterogeneous noise amplification, suggesting the costs may be greater in areas such as the subcortex. We evaluate MB factors of 2, 3, 4, 6, 8, 9, and 12 with 2 mm isotropic voxels, and additionally 2 mm and 3.3 mm single-band acquisitions, on a 32-channel head coil. Noise amplification was greater in deeper brain regions, including subcortical regions. Correlations were attenuated by noise amplification, which resulted in spatially varying biases t