Tate Krogh (restspear1)

In view of a clear lack of seasonal variability in testicular weight and size (the classic gonadal regression/recrudescence cycle) in the male Eared Dove, we examined whether their reproductive aseasonality could be the result of being in a continuous state of reproductive preparedness. Our results show that despite the absence of a marked gonadal cycle in terms of gonadal volume, plasma testosterone levels in males were minimal during autumn-winter, reaching maximum values during spring-summer. Selleckchem Uprosertib This indicates that male gonad function is not seasonal in terms of spermatogenesis but that circulating testosterone levels are correlated with photoperiod, demonstrating an exception to the classic model of reproduction in birds. The release of selenium (Se) and chromium (Cr) into the environment from anthropogenic activities has posed a hazard to aquatic ecosystems. In this study, we used Chlorella vulgaris for Se/Cr bioremediation and evaluated their mutual effects on the removal efficiency. Our results found C. vulgaris highly effective in removing selenite-Se(IV) (49.5 ± 1.9%), selenate-Se(VI) (93.0 ± 0.5%), chromic nitrate-Cr(III) (89.0 ± 3.2%) and dichromate-Cr(VI) (88.1 ± 1.3%) over a 72 h period. Cr(VI) significantly impeded Se removal, particularly for selenate, due to competition between both for algal uptake, whereas Cr(III) obviously enhanced Se removal, increasing Se volatilization by ~29%. Similarly, Se significantly increase Cr removal rates, with a maximum of 94.6 ± 0.2% for the algal co-exposed to Se(IV) and Cr(III). To reduce residual pollutants in the alga, we applied combustion as a post-treatment to burn off >99% of the biomass Se for all Se treatments, whereas most of the biomass Cr (54.7-81.6%) remained in the ash at significantly higher levels (~7430 μg Cr/g DW). For toxicity, our speciation analysis found organo-Se (SeCys and SeMet) dominant in the alga exposed to Se, particularly selenite. No Cr(VI) but Cr(III) forms were detected in all Cr-exposed alga. Elemental Se disappeared from all Se-exposed alga in the presence of Cr(VI), while Se resulted in the emergence of Cr-acetate in all Cr(III)-treated alga. After combustion, mineral Se, particularly elemental Se dominated most of the ash; likewise, elemental Cr, along with Cr2O3, was found in all the ash. Overall, our research would contribute to developing a low ecotoxic algal treatment system for Se/Cr contaminated water. Drawing insights from multiple disciplines is essential for finding integrative solutions that are required to tackle complex environmental problems. Human activities are causing unprecedented influence on global ecosystems, culminating in the loss of species and fundamental changes in the selective environments of organisms across the tree of life. Our collective understanding about biological evolution can help identify and mitigate many of the environmental problems in the Anthropocene. To this end, we propose a stronger integration of environmental sciences with evolutionary biology. In the present study, susceptibility to photocatalytic degradation of etodolac, 1,8-diethyl-1,3,4,9 - tetrahydro pyran - [3,4-b] indole-1-acetic acid, which is a non-steroidal anti-inflammatory drug frequently detected in an aqueous environment, was for the first time investigated. The obtained p-type TiO2-based photocatalyst coupled with zinc ferrite nanoparticles in a core-shell structure improves the separation and recovery of nanosized TiO2 photocatalyst. The characterization of ZnFe2O4/SiO2/TiO2, including XRD, XPS, TEM, BET, DR/UV-Vis, impedance spectroscopy and photocatalytic analysis, showed that magnetic photocatalyst containing anatase phase revealed markedly improved etodolac decomposition and mineralization measured as TOC removal compared to photolysis reaction. The effect of irradiation and pH range on photocatalytic decomposition of etodolac was studied