Juarez Trujillo (raftcar9)
Bjurböle L/LL4 ordinary chondrite was studied using scanning electron microscopy with energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. The phase composition and the relative iron fractions in the iron-bearing phases were determined. The unit cell parameters for olivine, orthopyroxene and clinopyroxene are similar to those observed in the other ordinary chondrites. SR10221 The higher contents of forsterite and enstatite were detected by Raman spectroscopy. Magnetization measurements showed that the temperature of the ferrimagnetic-paramagnetic phase transition in chromite is around 57 K and the saturation magnetic moment is ~7 emu/g. The values of the 57Fe hyperfine parameters for all components in the Bjurböle Mössbauer spectrum were determined and related to the corresponding iron-bearing phases. The relative iron fractions in Bjurböle and the 57Fe hyperfine parameters of olivine, orthopyroxene and troilite were compared with the data obtained for the selected L and LL ordinary chondrites. The Fe2+ occupancies of the M1 and M2 sites in silicate crystals were determined using both X-ray diffraction and Mössbauer spectroscopy. Then, the temperatures of equilibrium cation distribution were determined, using two independent techniques, for olivine as 666 K and 850 K, respectively, and for orthopyroxene as 958 K and 1136 K, respectively. Implications of X-ray diffraction, magnetization measurements and Mössbauer spectroscopy data for the classification of the studied Bjurböle material indicate its composition being close to the LL group of ordinary chondrites.Specifically, visually, and quantitatively monitor copper ion (Cu2+) is critical in the area of biological and environmental detection. Herein, a ratiometric fluorescent probe with benzoxazole appended xanthenes skeleton was constructed and further employed to monitor Cu2+ in Hela cells, real water samples, and test strips. An easily distinguishable colorimetric (colorless to red) and fluorescence (green to red) change could be observed by naked eye under the portable UV lamp (365 nm) and the changes could be recovered by adding S2-. Furthermore, electrospinning technique was employed to fabricate a probe composited fluorescent sensing film (PMMA) for realizing the visual and recyclable monitoring of Cu2+, indicating that the probe-composited fluorescent sensing film has great potential for on-site and naked-eye detection of Cu2+ in practical.The structural elucidation and syntheses methods of new peripherally tetra-substituted MPcs [CuII(6), CoII(7), MnCIIII(8), and NiII(9) phthalocyanines] carrying 4-methyl-N-(3-morpholinopropyl)benzenesulfonamide moieties were reported in the present study. The corroboration of the prepared compounds (3, 5, and 6 to 9) was made by LC-TOF/MS, UV-Vis, Fourier Infrared, 1H NMR, 13C NMR, and MALDI-TOF mass spectral data. Herein, we submit a new procedure that uses metallophthalocyanine complexes for the first time as spectrofluorimetric agents to detect and determine health-threatening food additive, Sudan II dye, with a new simpler, cheaper, and faster spectrofluorimetric method instead of time-consuming and expensive HPLC processes. Furthermore, the sensitivities of the proposed methods are good enough to determine the amount of dye at a concentration of 0.1 mg/L. The methods have LOD values between 0.035 and 0.050 mg/L. The linear ranges are found to be between 0 and 8.3 mg/L. The precision of the methods is determined to be between 1.1 and 2.4 as % RSD. Therefore, this study would make a good contribution to the food industry and phthalocyanine chemistry by detecting and determining the hazardous food colorant Sudan II with metal phthalocyanines.Squaraine dyes are potential photosensitizers in photodynamic therapy (PDT) due to their ability to release reactive oxygen species (ROS) and cause DNA damage. For this reason, the evaluation and determination of the t