Therkelsen Daugaard (quivercloset7)
Our proposed architecture, IBA-U-Net, has been compared with the U-Net and state-of-the-art segmentation methods on three publicly available datasets, the lung image segmentation dataset, skin lesion image dataset, and retinal blood vessel image segmentation dataset, each with their unique challenges, and it has improved the prediction performance even with slightly less calculation expense and fewer network parameters. By devising a deep convolutional neural network with a multiscale feature fusion and Attentive BConvLSTM mechanism, medical image segmentation of different tasks can be completed effectively and accurately with only 45% of U-Net parameters.Kidney stones are a common complaint worldwide, causing many people to admit to emergency rooms with severe pain. Various imaging techniques are used for the diagnosis of kidney stone disease. Specialists are needed for the interpretation and full diagnosis of these images. Computer-aided diagnosis systems are the practical approaches that can be used as auxiliary tools to assist the clinicians in their diagnosis. this website In this study, an automated detection of kidney stone (having stone/not) using coronal computed tomography (CT) images is proposed with deep learning (DL) technique which has recently made significant progress in the field of artificial intelligence. A total of 1799 images were used by taking different cross-sectional CT images for each person. Our developed automated model showed an accuracy of 96.82% using CT images in detecting the kidney stones. We have observed that our model is able to detect accurately the kidney stones of even small size. Our developed DL model yielded superior results with a larger dataset of 433 subjects and is ready for clinical application. This study shows that recently popular DL methods can be employed to address other challenging problems in urology.Zebrafish is a powerful and widely-used model system for a host of biological investigations, including cardiovascular studies and genetic screening. Zebrafish are readily assessable during developmental stages; however, the current methods for quantifying and monitoring cardiac functions mainly involve tedious manual work and inconsistent estimations. In this paper, we developed and validated a Zebrafish Automatic Cardiovascular Assessment Framework (ZACAF) based on a U-net deep learning model for automated assessment of cardiovascular indices, such as ejection fraction (EF) and fractional shortening (FS) from microscopic videos of wildtype and cardiomyopathy mutant zebrafish embryos. Our approach yielded favorable performance with accuracy above 90% compared with manual processing. We used only black and white regular microscopic recordings with frame rates of 5-20 frames per second (fps); thus, the framework could be widely applicable with any laboratory resources and infrastructure. Most importantly, the automatic feature holds promise to enable efficient, consistent, and reliable processing and analysis capacity for large amounts of videos, which can be generated by diverse collaborating teams.High-fidelity patient-specific modeling of cardiovascular flows and hemodynamics is challenging. Direct blood flow measurement inside the body with in-vivo measurement modalities such as 4D flow magnetic resonance imaging (4D flow MRI) suffer from low resolution and acquisition noise. In-vitro experimental modeling and patient-specific computational fluid dynamics (CFD) models are subject to uncertainty in patient-specific boundary conditions and model parameters. Furthermore, collecting blood flow data in the near-wall region (e.g., wall shear stress) with experimental measurement modalities poses additional challenges. In this study, a computationally efficient data assimilation method called reduced-order modeling Kalman filter (ROM-KF) was proposed, which combined a sequential Kalman filter with reduced-order modeling using a linear model provided by dynamic mode decomposit