Weiss Kehoe (powerfog30)

Water-soluble complexes are desirable for the aqueous detoxification of cyanide. Molybdenum complexes with α-amino acid and disulfide ligands with the formula K[(L)Mo2O2(μ-S)2(S2)] (L = leu (1), met (2), thr (3), and ser (4)) were synthesized in a reaction of [(DMF)3MoO(μ-S)2(S2)] with deprotonated α-amino acids; leu, met, thr, and ser are the carboxylate anions of l-leucine, l-methionine, l-threonine, and l-serine, respectively. Potassium salts of α-amino acids (leu (1a), met (2a), thr (3a), and ser (4a)) were prepared as precursors for complexes 1-4, respectively, by employing a nonaqueous synthesis route. The ligand exchange reaction of [Mo2O2(μ-S)2(DMF)6](I)2 with deprotonated α-amino acids afforded bis-α-amino acid complexes, [(L)2Mo2O2(μ-S)2] (6-8). A tris-α-amino acid complex, [(leu)2Mo2O2(μ-S)2(μ-leu + H)] (5; leu + H is the carboxylate anion of l-leucine with the amine protonated), formed in the reaction with leucine. 5 crystallized from methanol with a third weakly bonded leucine as a bridging bidentate carboxylate. An adduct of 8 with SCN- coordinated, 9, crystallized and was structurally characterized. Complexes 1-4 are air stable and highly water-soluble chiral molecules. Cytotoxicity studies in the A549 cell line gave IC50 values that range from 80 to 400 μM. Cyclic voltammetry traces of 1-8 show solvent-dependent irreversible electrochemical behavior. Complexes 1-4 demonstrated the ability to catalyze the reaction of thiosulfate and cyanide in vitro to exhaustively transform cyanide to thiocyanate in less than 1 h.A novel 2D porous Zr(IV)-based metal-organic framework (USTS-7) was assembled from 2,5-bis[2-(methylthio)ethylthio]terephthalic acid and ZrCl4. USTS-7 retains its stability in water, strong acid, and base; moreover, it is highly luminescent and displays a remarkable selective sensing property toward Cr2O72- in aqueous solution with a very low detection limit.Flavor is an essential quality characteristic of soymilk. (E)-2-Heptenal has a fatty and fruity flavor with the sensory threshold value of 13 μg/L in water. This study demonstrated that the formation of (E)-2-heptenal was independent of the lipoxygenase (LOX) and hydroperoxide lyase (HPL) activity as well as oxygen concentration but was related to the presence/absence of Fe2+ and chelators. In a dry matter base, soybean hypocotyls generated a much higher amount of (E)-2-heptenal than cotyledons. A phospholipid hydroperoxide was purified from the chloroform/methanol extract of soybean hypocotyls and was identified as 1-palmitoyl-2-(12-hydroperoxyoctadecadienoyl)-sn-glycerol-3-phosphatidylethanol-amine (12-PEOOH). The decomposition of 12-PEOOH in the presence of ferrous ions to form (E)-2-heptenal was studied in a model system. The rate of decomposition decreased sharply at pH values higher than 6, but the molar conversion of 12-PEOOH to (E)-2-heptenal increased with an increase of pH. At a constant pH of 5.8, the decomposition rate of 12-PEOOH was positively linearly related to the Fe2+ concentration, while the molar conversion to (E)-2-heptenal was 74% and independent of the Fe2+ concentration. The formation of radicals LOO• and R• showed similar pH and Fe2+ concentration dependence with those of (E)-2-heptenal. (E)-2-Heptenal displayed an enhancement of bean aroma and fruity flavor of soymilk at low concentrations, but a fatty flavor was noticed at high concentrations.Isoleucine dioxygenase (IDO)-catalyzed hydroxylation of isoleucine is a promising method for the synthesis of the diabetic drug (2S,3R,4S)-4-hydroxyisoleucine [(2S,3R,4S)-4-HIL]. However, the low activity of IDO significantly limits its practical application. In this work, a high-throughput screening method was developed and directed evolution was performed on the IDO from Bacillus subtilis, resulting in a double mutant with improvements in specific activity, protein expression level, and fermentation titer of 3.2-, 2.8-, and 9