McGinnis Browning (pondrose57)
Active learning-the field of machine learning (ML) dedicated to optimal experiment design-has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-driven autonomous system on another major challenge, the discovery of advanced materials against the exceedingly complex synthesis-processes-structure-property landscape. We demonstrate an autonomous materials discovery methodology for functional inorganic compounds which allow scientists to fail smarter, learn faster, and spend less resources in their studies, while simultaneously improving trust in scientific results and machine learning tools. This robot science enables science-over-the-network, reducing the economic impact of scientists being physically separated from their labs. The real-time closed-loop, autonomous system for materials exploration and optimization (CAMEO) is implemented at the synchrotron beamline to accelerate the interconnected tasks of phase mapping and property optimization, with each cycle taking seconds to minutes. We also demonstrate an embodiment of human-machine interaction, where human-in-the-loop is called to play a contributing role within each cycle. This work has resulted in the discovery of a novel epitaxial nanocomposite phase-change memory material.Although calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO3)2] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior. Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biogenic high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized.A Correction to this paper has been published https//doi.org/10.1038/s41467-020-20098-z.A Correction to this paper has been published https//doi.org/10.1038/s41467-020-20117-z.Adenosine, its interacting A1 and A2A receptors, and particularly the variant rs5751876 in the A2A gene ADORA2A have been shown to modulate anxiety, arousal, and sleep. In a pilot positron emission tomography (PET) study in healthy male subjects, we suggested an effect of rs5751876 on in vivo brain A1 receptor (A1AR) availability. As female sex and adenosinergic/dopaminergic interaction partners might have an impact on this rs5751876 effect on A1AR availability, we aimed to (1) further investigate the pilot male-based findings in an independent, newly recruited cohort including women and (2) analyze potential modulation of this rs5751876 effect by additional adenosinergic/dopaminergic gene variation. Healthy volunteers (32/11 males/females) underwent phenotypic characterization including self-reported sleep and A1AR-specific quantitative PET. Rs5751876 and 31 gene variants of adenosine A1, A2A, A2B, and A3 receptors, adenosine deaminase, and dopamine D2 receptor were genotyped. Multivariate analysis revealed an rs5751876 effect on A1AR availability (P = 0.047), post hoc confirmed in 30 of 31 brain regions (false discovery rate (FDR) corrected P values less then 0.05), but statistically stronger in anxiety-related regions (e.g., amygdala, hippocampus). Additiona