Khan Begum (pinklead80)
There is increasing interest in using insects as an alternative nutrient source and Mysore thorn borer (MTB) (Anoplophora chinensis) might have nutritional and functional relevance for humans. The nutritional composition of MTB (amino acids, fatty acids, and elements profiles) was examined and compared with mealworm larva (MWL) (Tenebrio molitor). MTB was found to contain 19 amino acids, including all essential amino acids. A total of 16 fatty acids were detected including polyunsaturated fatty acids (e.g. α-linolenic acid and linoleic acid). Moreover, MTB had a low n - 6/n - 3 ratio and contained some essential elements, such as iron, zinc, calcium, and potassium. These results demonstrated that MTB might be a potential source of nutritional compounds for human consumption. Deoxynivalenol (DON) is one of the most common contaminants of cereal grains. Efficient and environmental-friendly technology to eliminate DON is important for food safety and environmental protection. In this work, upconversion nanoparticles (UCNP) coated with titanium dioxide (TiO2) photocatalysts were synthesized. Then, a photocatalytic experiment was performed to test the impact of NaYF4Yb,Tm@TiO2 of DON degradation. Our results showed the DON degradation rate at 10 μg/mL under simulated sunlight using NaYF4Yb,Tm@TiO2 (6 mg/mL) approached 100% within 60 min at pH 8.0. UPLC-Q-TOF MS was used to monitor the degradation process and three degradation products were identified, namely C15H20O8, C15H20O7 and C15H20O5. Subsequently, we studied the photocatalytic degradation of DON in wheat, providing a theoretical basis for photocatalytic degradation of contaminated grain samples. This study demonstrated that UCNP@TiO2 photocatalysis has the potential for detoxification in food security applications. Chestnut rose (Rosa roxburghii Tratt.) is a native fruit in China, rich in bioactive compounds. Chemical properties and bioactive compounds in the largest two cultivars (Gui Nong No. 5 and Golden Cili) of chestnut rose from different regions were analyzed and compared. Meanwhile, catechin, quercetin, myricetin, kaempferol, ellagic acid and ellagic acid glucuronide were identified. By comparison, Guinong No. 5 showed higher SOD actitviy (5,687.67-5,797.48 U/g), ascorbic acid (1.38-1.47 g/100 g), catechin (971.67-1405.75 mg/100 g) and myricetin (851.32-876.32 mg/100 g), antioxidant capacity, while Golden Cili was characterized with higher total flavnoids (263.30-278.63 mg/100 g), β-carotene (747.31-859.21 μg/100 g) and zeaxanthin (186.03-268.78 μg/100 g), glucose (10.32-12.03 g/100 g) and arabinose (3.22-3.43 g/100 g), tartaric acid (0.20-0.52 g/100 g), quercetin (1,034.63-1,411.08 mg/100 g). The principal components analysis method can be used to separate two cultivars well and partial least squares discrimination analysis method can be used to distinguish different planting regions well. In this study, some flavonoids were screened as potent xanthine oxidase (XO) inhibitors in vitro. Flavonoid 9 was demonstrated to exhibit the inhibitory activity through a ping-pong mechanism. Further structure-activity relationship revealed that different structural elements had greatly influenced the inhibition effect on XO and underlined the requirement of hydroxyl groups at C5 and C4' of flavonoid type I. Moreover, some bioactive flavonoids could efficiently quench the intrinsic fluorescence of XO by either static or static-dynamic mixed mechanism. The synchronous fluorescence, ANS-binding fluorescence, Fourier transform infrared spectra and circular dichroism suggested that active flavonoids could bind to the active center of XO, prevent the entrance of substrate, and induce the rearrangement and conformation change of its secondary structures, ultimately resulting in the significant inhibition effect. Additionally, molecular docking further