Penn Villarreal (picklebike44)

BACKGROUND Bovine besnoitiosis, caused by the apicomplexan parasite Besnoitia besnoiti, is a chronic and debilitating cattle disease that notably impairs fertility. Acutely infected bulls may develop respiratory signs and orchitis, and sterility has been reported in chronic infections. However, the pathogenesis of acute disease and its impact on reproductive function remain unknown. METHODS Herein, we studied the microscopic lesions as well as parasite presence and load in the testis (pampiniform plexus, testicular parenchyma and scrotal skin) of seven bulls with an acute B. besnoiti infection. Acute infection was confirmed by serological techniques (IgM seropositive results and IgG seronegative results) and subsequent parasite detection by PCR and histological techniques. RESULTS The most parasitized tissue was the scrotal skin. Moreover, the presence of tachyzoites, as shown by immunohistochemistry, was associated with vasculitis, and three bulls had already developed juvenile tissue cysts. In all animals, inflammatory response in the testis; and (iii) blood-testis barrier damage and alteration of spermatogenesis by immunoresponse.BACKGROUND Myelin sheaths surrounding axons are critical for electrical signal transmission in the central nervous system (CNS). Diseases with myelin defects such as multiple sclerosis (MS) are devastating neurological conditions for which few effective treatments are available. Dysfunction of the dopaminergic system has been observed in multiple neurological disorders. Its role in myelin pathogenesis, however, is unclear. METHODS This work used a combination of literature curation, bioinformatics, pharmacological and genetic manipulation, as well as confocal imaging techniques. Literature search was used to establish a complete set of genes which is associated with MS in humans. Bioinformatics analyses include pathway enrichment and crosstalk analyses with human genetic association studies as well as gene set enrichment and causal relationship analyses with transcriptome data. Pharmacological and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) genetic manipulation were applied to inhibit the dopaminergic signaling in zebrafish. Imaging techniques were used to visualize myelin formation in vivo. RESULTS Systematic analysis of human genetic association studies revealed that the dopaminergic synapse signaling pathway is enriched in candidate gene sets. selleck products Transcriptome analysis confirmed that expression of multiple dopaminergic gene sets was significantly altered in patients with MS. Pathway crosstalk analysis and gene set causal relationship analysis reveal that the dopaminergic synapse signaling pathway interacts with or is associated with other critical pathways involved in MS. We also found that disruption of the dopaminergic system leads to myelin deficiency in zebrafish. CONCLUSIONS Dopaminergic signaling may be involved in myelin pathogenesis. This study may offer a novel molecular mechanism of demyelination in the nervous system.BACKGROUND In increasingly constrained healthcare budgets worldwide, efforts to improve quality and reduce costs are vital. Quality Improvement Collaboratives (QICs) are often used in healthcare settings to implement proven clinical interventions within local and national programs. The cost of this method of implementation, however, is cited as a barrier to use. This systematic review aims to identify and describe studies reporting on costs and cost-effectiveness of QICs when used to implement clinical guidelines in healthcare. METHODS Multiple databases (CINAHL, MEDLINE, PsycINFO, EMBASE, EconLit and ProQuest) were searched for economic evaluations or cost studies of QICs in healthcare. Studies were included if they reported on economic evaluations or costs of QICs. Two authors independently reviewed citations and full text papers. Key characteristics of eligible studies were extracted, and their q