Andreasen Nymand (oystercrook3)

In older adults pneumococcal disease is strongly associated with respiratory viral infections, but the impact of viruses on Streptococcus pneumoniae carriage prevalence and load remains poorly understood. Here, we investigated the effects of influenza-like illness (ILI) on pneumococcal carriage in community-dwelling older adults. We investigated the presence of pneumococcal DNA in saliva samples collected in the 2014/2015 influenza season from 232 individuals aged ≥60 years at ILI-onset, followed by sampling 2-3 weeks and 7-9 weeks after the first sample. We also sampled 194 age-matched controls twice 2-3 weeks apart. Pneumococcal DNA was detected with quantitative-PCRs targeting piaB and lytA genes in raw and in culture-enriched saliva. Bacterial and pneumococcal abundances were determined in raw saliva with 16S and piaB quantification. The prevalence of pneumococcus-positive samples was highest at onset of ILI (18% or 42/232) and lowest among controls (13% or 26/194, and 11% or 22/194, at the first and second sampling moment, respectively), though these differences were not significant. Pneumococcal carriage was associated with exposure to young children (OR2.71, 95%CI 1.51-5.02, p<0.001), and among asymptomatic controls with presence of rhinovirus infection (OR4.23; 95%CI 1.16-14.22, p<0.05). When compared with carriers among controls, pneumococcal absolute abundances were significantly higher at onset of ILI (p<0.01), and remained elevated beyond recovery from ILI (p<0.05). Finally, pneumococcal abundances were highest in carriage events newly-detected after ILI-onset (estimated geometric mean 1.21E -5, 95%CI 2.48E -7-2.41E -5, compared with pre-existing carriage). ILI exacerbates pneumococcal colonization of the airways in older adults, and this effect persists beyond recovery from ILI. ILI exacerbates pneumococcal colonization of the airways in older adults, and this effect persists beyond recovery from ILI. As new drugs are developed for multidrug-resistant tuberculosis (MDR-TB), the role of currently used drugs must be reevaluated. We combined individual-level data on patients with pulmonary MDR-TB published during 2009-2016 from 25 countries. We compared patients receiving each of the injectable drugs and those receiving no injectable drugs. Analyses were based on patients whose isolates were susceptible to the drug they received. Using random-effects logistic regression with propensity score matching, we estimated the effect of each agent in terms of standardized treatment outcomes. More patients received kanamycin (n = 4330) and capreomycin (n = 2401) than amikacin (n = 2275) or streptomycin (n = 1554), opposite to their apparent effectiveness. Compared with kanamycin, amikacin was associated with 6 more cures per 100 patients (95% confidence interval [CI], 4-8), while streptomycin was associated with 7 (95% CI, 5-8) more cures and 5 (95% CI, 4-7) fewer deaths per 100 patients. Compared with capreomycin, amikacin was associated with 9 (95% CI, 6-11) more cures and 5 (95% CI, 2-8) fewer deaths per 100 patients, while streptomycin was associated with 10 (95% CI, 8-13) more cures and 10 (95% CI, 7-12) fewer deaths per 100 patients treated. In contrast to amikacin and streptomycin, patients treated with kanamycin or capreomycin did not fare better than patients treated with no injectable drugs. When aminoglycosides are used to treat MDR-TB and drug susceptibility test results support their use, streptomycin and amikacin, not kanamycin or capreomycin, are the drugs of choice. When aminoglycosides are used to treat MDR-TB and drug susceptibility test results support their use, streptomycin and amikacin, not kanamycin or capreomycin, are the drugs of choice. Cutaneous leishmaniasis (CL) is a neglected tropical disease causing an estimated 1 million new cases annually. While antimonial compounds are the standard of ca