Mcleod Valenzuela (oxygenshrimp91)
We report on X-ray photoelectron spectroscopy (XPS) and ab initio electronic structure investigations of a novel intermetallic material Ce 9 Ru 4 Ga 5 . The compound crystallizes with a tetragonal unit cell (space group I4 m m ) that contains three inequivalent Ce atoms sites. The Ce 3 d core level XPS spectra indicated an intermediate valence (IV) of selected Ce ions, in line with the previously reported thermodynamic and spectroscopic data. The ab initio calculations revealed that Ce1 ions located at 2 a Wyckoff positions possess stable trivalent configuration, whereas Ce2 ions that occupy 8 d site are intermediate valent. Moreover, for Ce3 ions, located at different 8 d position, a fractional valence was found. The results are discussed in terms of on-site and intersite hybridization effects.In situ dilatometry experiments using high energy synchrotron X-ray diffraction in transmission mode were carried out at the high energy material science beamline P07@PETRAIII at DESY (Deutsches Elektronen Synchrotron) for the tempering steel AISI 4140 at defined mechanical loading. The focus of this study was on the initial tempering state ( f e r r i t e ) and the hardened state ( m a r t e n s i t e ). Lattice strains were calculated from the 2D diffraction data for different h k l planes and from those temperature-dependent lattice plane specific diffraction elastic constants ( D E C s ) were determined. The resulting coupling terms allow for precise stress analysis for typical hypoeutectoid steels using diffraction data during heat treatment processes, that is, for in situ diffraction studies during thermal exposure. In addition, by averaging h k l specific Y o u n g ' s m o d u l i and P o i s s o n r a t i o s macroscopic temperature-dependent elastic constants were determined. In conclusion a novel approach for the determination of phase-specific temperature-dependent DECs was suggested using diffraction based dilatometry that provides more reliable data in comparison to conventional experimental procedures. Moreover, the averaging of lattice plane specific results from in situ diffraction analysis supply robust temperature-dependent macroscopic elastic constants for martensite and ferrite as input data for heat treatment process simulations.Adult granulosa cell tumors (AGCTs) harbor a somatic FOXL2 c.402C>G mutation in ~95% of cases and are mainly surgically removed due to limited systemic treatment effect. In this study, potentially targetable genomic alterations in AGCTs were investigated by whole genome sequencing on 46 tumor samples and matched normal DNA. Copy number variant (CNV) analysis confirmed gain of chromosome 12 and 14, and loss of 22. Pathogenic TP53 mutations were identified in three patients with highest tumor mutational burden and mitotic activity, defining a high-grade AGCT subgroup. Within-patient tumor comparisons showed 29-80% unique somatic mutations per sample, suggesting tumor heterogeneity. A higher mutational burden was found in recurrent tumors, as compared to primary AGCTs. FOXL2-wildtype AGCTs harbored DICER1, TERT(C228T) and TP53 mutations and similar CNV profiles as FOXL2-mutant tumors. Phleomycin D1 manufacturer Our study confirms that absence of the FOXL2 c.402C>G mutation does not exclude AGCT diagnosis. The lack of overlapping variants in targetable cancer genes indicates the need for personalized treatment for AGCT patients.The rapid spread of wearable technologies has motivated the collection of a variety of signals, such as pulse rate, electrocardiogram (ECG), electroencephalogram (EEG), and others. As those devices are used to do so many tasks and store a significant amount of personal data, the concern of how our data can be exposed starts to gain attention as the wearable devices can become an attack vector or a security breach. In this context, biometric also has expanded its use to meet new security requirements of authentication demanded by online applications, and it has b