Kofoed Medlin (ounceslope56)

Defect engineering in the photoelectrochemical (PEC) process of photoelectrodes has been extensively studied. But insufficient attention has been received about the impact of metal vacancies (VM) in PEC process. Herein, the influence of Cu vacancies (VCu) on PEC performance of copper oxide (CuO) derived from Cu-based metal-organic gel (Cu-MOG) precursor was reported. It can be found that the presence of more VCu can improve the PEC activity of CuO photocathode by facilitating the charge separation and transfer. Moreover, the as-prepared CuO was presented as a new PEC sensor to detect l-cysteine (L-Cys) on the basis of the excellent PEC performance, which showed high sensitivity and selectivity. Tipranavir manufacturer Good linear response of L-Cys within the range of 0.1-6 μM was performed with a detection limit of 0.04 μM. This work not only provides insights into the role of VM in the PEC process of photocathodes, but also proved the high potential applicability of CuO as a PEC device for biomolecule detection.Gold nanoparticles are known to exhibit appealing intrinsic plasmon-modulated photoluminescence (PL) properties which can be explored in various fluorescence-based sensing applications. In this paper, we evaluate the PL of different-sized gold nanospheres (AuNSs) under one-photon excitation (1PE) and develop a sensitive homogeneous immunoassay for the detection of prostate specific antigen (PSA) in colloidal suspension via fluorescence correlation spectroscopy (FCS). The 1PE PL of AuNSs of three different sizes are evaluated in solution phase under excitation at 405 nm via steady-state fluorescence spectroscopy measurements, while FCS analysis emphasizes the feasibility of using 1PE PL properties to monitor their diffusion behavior. Fluorescence lifetime imaging microscopy (FLIM) assays coupled with PL spectral profile analysis performed on single-particles-like structures conform the plasmonic origin of the detected PL and validate their potential of synthesized AuNSs as fluorescent probes in bioimaging and bioassays. Finally, to the best of our knowledge, we provide the first demonstration of the successful use of the 1PE PL of the synthesized AuNSs as probes for the FCS-based one-step label-free sensitive optical detection of PSA biomarker. The approach consisting in monitoring the diffusion of the AuNSs-oligomers induced by the interaction of anti-PSA-conjugated AuNSs with PSA molecules is successfully validated for the detection of PSA levels as low as 4.4 ng/ml in solution. Considering that the development of rapid, efficient and label-free biosensing methods is of continuous interest nowadays, we are confident that our results may have a strong impact on medicine towards more efficient, sensitive and reliable diagnosis.The sorption ability of Lewatit FO 36-DGT resin gel, which has been developed for arsenic determination, towards uranium was tested by batch experiments within this study for the first time. Since the uptake efficiency of uranium was 99.0 ± 0.4% and the maximum uptake capacity was not achieved even at the U spike of 1250 μg in the solution, the Lewatit FO 36 resin seems to be a suitable binding phase for DGT resin gels for the determination of uranium. The resin gel also does not display any significant sorption selectivity in favour of one element over another. A novel protocol for simultaneous elution of arsenic and uranium from Lewatit FO 36 resin gel was therefore proposed in this study. The elution efficiencies of 90.3 ± 3.9% and 85.2 ± 3.1% for As and U, respectively, were obtained using 5 mL of 1 M NaOH at 70 °C for 24 h. The comparison with the original elution protocol using microwave-assisted elution by 0.25 M NaOH and 0.17 M NaCl at 130 °C for 16 min indicates, that the novel elution protocol provides good results in the performance of arsenic elution and, in addition, allows simultaneous elution of uranium. Moreover, the elimination of NaCl from the elution process allows a fast an