Rosenberg Marshall (noisepaste5)

Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that is resistant to most clinical treatments. Novel therapeutic agents that are effective against GBM are required. Antrodia cinnamomea has shown antiproliferative effects in GBM cells. However, the exact mechanisms and bioactive components remain unclear. Thus, the present study aimed to investigate the effect and mechanism of 4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from Antrodia cinnamomeamycelium, in vitro. U87 and U251 cell lines were treated with the indicated concentration of 4AALT3. Cell viability, cell colony-forming ability, migration, and the expression of proteins in well-known signaling pathways involved in the malignant properties of glioblastoma were then analyzed by CCK-8, colony formation, wound healing, and western blotting assays, respectively. We found that 4AALT3 significantly decreased cell viability, colony formation, and cell migration in both in vitro models. The epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Hippo/yes-associated protein (YAP), and cAMP-response element binding protein (CREB) pathways were suppressed by 4AALT3. Moreover, 4AALT3 decreased the level of DNA repair enzyme O6-methylguanine-DNA methyltransferase and showed a synergistic effect with temozolomide. Our findings provide the basis for exploring the beneficial effect of 4AALT3 on GBM in vivo.The molecular mechanism underlying the anticancer effects of Anemarrhena asphodeloides (A. asphodeloides) on colon cancer is unknown. This is the first study evaluating the anticancer effect of A. asphodeloides extract (AA-Ex) in serum-starved colorectal cancer cells. Changes in cell proliferation and morphology in serum-starved MC38 and HCT116 colorectal cancer cells were investigated using MTS assay. Cell cycle and apoptosis were investigated using flow cytometry, and cell cycle regulator expression was determined using qRT-PCR. Apoptosis regulator protein levels and mitogen-activated protein kinase (MAPK) phosphorylation were assessed using western blotting. AA-Ex sensitively suppressed proliferation of serum-starved colorectal cancer cells, with MC38 and HCT116 cells showing greater changes in proliferation after treatment with AA-Ex under serum starvation than HaCaT and RAW 264.7 cells. AA-Ex inhibited cell cycle progression in serum-starved MC38 and HCT116 cells and increased the expression of cell cycle inhibitors (p53, p21, and p27). Furthermore, AA-Ex induced apoptosis in serum-starved MC38 and HCT116 cells. Consistently, AA-Ex suppressed the expression of the anti-apoptotic molecule Bcl-2 and upregulated pro-apoptotic molecules (cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved-PARP) in serum-starved cells. AA-Ex treatment under serum starvation decreased AKT and ERK1/2 phosphorylation in the cell survival signaling pathway but increased p38 and JNK phosphorylation. Furthermore, AA-Ex treatment with serum starvation increased the levels of the transcription factors of the p38 and JNK pathway. Serum starvation sensitizes colorectal cancer cells to the anticancer effect of A. asphodeloidesvia p38/JNK-induced cell cycle arrest and apoptosis. Hence, AA-Ex possesses therapeutic potential for colon cancer treatment.Neuraminidase, also known as sialidase, is ubiquitous in animals and microorganisms. It is predominantly distributed in the cell membrane, cytoplasmic vesicles, and lysosomes. Neuraminidase generally recognizes the sialic acid glycosidic bonds at the ends of glycoproteins or glycolipids and enzymatically removes sialic acid. There are four types of neuraminidases, named as Neu1, Neu2, Neu3, and Neu4. Among them, Neu1 is the most abundant in mammals. Recent studies have revealed the involvement of Neu1 in several diseases, including cardiovascular diseases, diabetes, cancers, and neurological disorders. In this review, we center the attention to the role of Neu1 in card