Valenzuela Michael (moleswamp3)
Genetic and epidemiological data may contribute to national policy formulation, transmission tracking and the implementation of measures to control viral spread.The current study was carried out on dominant fish Oreochromis niloticus and water collected from the polluted Yamuna River, Agra, India. The heavy metals in water, recorded as follows Fe > Mn > Zn > Cu > Ni > Cr > Cd and all were found to be above the prescribed limits. According to metal pollution index, exposed muscle (49.86), kidney (47.68) and liver (45.26) have been recorded to have higher bioaccumulation. The blood biochemical analysis of exposed O. niloticus indicated significant increase in activities of aspartate aminotransferase (+ 343.5%), alkaline phosphatase (+ 673.6%), alanine aminotransferase (+ 309.1%), and creatinine (+ 494.3%) over the reference. However, a significant decrease in albumin (A) globulins (G) ratio (- 87.86%) was observed. Similarly, the exposed fish also showed significant increase in total leucocyte count (+ 121%), differential leucocyte count, respiratory burst (+ 1175%), and nitric oxide synthase (+ 420%). The histological examination of liver and kidney showed tissue injury. Moreover, micronuclei (0.95%), kidney shaped nuclei (1.2%), and lobed nuclei (0.6%) along with DNA damage in the form of mean tail length in the liver (20.7 µm) and kidney (16.5 µm) was observed in the exposed O. niloticus. Potential health risk assessments based on estimated daily intake, target hazard quotient, hazard index, and target cancer risk indicated health risks associated with the consumption of these contaminated fishes. In conclusion, the present study showed that exposure to heavy metals contaminated water can alter immunological response; induce histopathological alterations and DNA damage in the studied fish. The consumption of this contaminated water or fish could have serious impact on human health.Structural studies of the aggregation inhibition of the amyloid-β peptide (Aβ) by different natural compounds are of the utmost importance due to their great potential as neuroprotective and therapeutic agents for Alzheimer's disease. We provided the simulation of molecular dynamics for two different states of Aβ42, including "monomeric aggregation-prone state (APS)" and "U-shaped pentamers of amyloidogenic protofilament intermediates" in the absence and presence of polyphenolic flavonoids (Flvs, myricetin and morin) in order to verify the possible mechanism of Flvs fibrillogenesis suppression. Data showed that Flvs directly bind into Aβ42 species in both states of "monomeric APS β-sheets" and "pentameric amyloidogenic intermediates". Binding of Flvs with amyloidogenic protofilament intermediates caused the attenuation of some inter-chains H-bonds, salt bridges, van der Waals and interpeptide interaction energies without interfering with their secondary β-sheets. Therefore, Flvs redirect oligomeric amyloidogeation of two different monomeric and pentameric Aβ42 systems. The distinct dual functions of Flvs are proposed as suppressing the aggregation by converting β-sheets of monomeric APS to proper soluble structures and disrupting the "steric zipper" fibril motifs of oligomeric intermediate by converting on-pathway into off-pathway. Taken together, our data propose that Flvs exert dual and more effective functions against monomeric APS (fibrillogenesis suppression) and remodel the Aβ aggregation pathway (fibril destabilization).Sensor data can be wirelessly transmitted from simple, battery-less tags using Radio Frequency Identification (RFID). RFID sensor tags consist of an antenna, a radio frequency integrated circuit chip (RFIC), and at least one sensor. An ideal tag can communicate over a long distance and be seamlessly integrated onto everyday objects. However, miniaturized antenna designs often have lower performance. Here we demonstrate compact, flexible sensor tags with read range comparable to that of conventional rigid ta