Heller Mouridsen (modempastor6)
Lithium-ion batteries have had a tremendous impact on several sectors of our society; however, the intrinsic limitations of Li-ion chemistry limits their ability to meet the increasing demands of developing more advanced portable electronics, electric vehicles, and grid-scale energy storage systems. Therefore, battery chemistries beyond Li ions are being intensively investigated and need urgent breakthroughs toward commercial applications, wherein the use of metallic Li is one of the most intuitive choices. Despite several decades of oblivion due to safety concerns regarding the growth of Li dendrites, Li-metal anodes are now poised to be revived because of the advances in investigative tools and globally invested efforts. In this review, we first summarize the existing issues with regard to Li anodes and their underlying reasons and then highlight the recent progress made in the development of high-performance Li anodes. Finally, we propose the persisting challenges and opportunities toward the exploration of practical Li-metal anodes.Catalytic conversion of CO to CO2 has been investigated in ultrahigh vacuum (UHV) under cryogenic conditions (10 K). This cryogenic oxidation is assisted by iron upon its co-deposition with CO, on a substrate. The study shows that the interaction of Fe and CO results in a Fe-CO complex that reacts in the presence of excess CO at cryogenic conditions leading to CO2. Here, the presence of CO on the surface is a prerequisite for the reaction to occur. Different control experiments confirm that the reaction takes place in the condensed phase and not in the gas phase. Surface sensitive reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and Cs+ based low energy ion scattering are utilized for this study. The iron assisted formation of CO2 may be proposed as another pathway relevant in interstellar ices, containing CO. This direct oxidation process, which occurs at extremely low temperatures and pressures, in the presence of a reactive metal species like iron (the most abundant metal in the interstellar medium) may have astrochemical importance. It does not require any external energy in the form of photo-irradiation or thermal processing. Such reactions are highly relevant in cold dense molecular clouds where interactions between neutral species are more favoured.A highly conjugated polymeric porphyrin with an ethynyl group is proposed as a new cathode for lithium organic batteries. The electrochemical performance is significantly improved after a simple coupled polymerization, resulting in excellent cycling stability with a capacity retention of 99.2% for 2000 cycles.Signal Amplification by Reversible Exchange (SABRE) uses para-enriched dihydrogen, pH2, to boost the NMR signal by several orders of magnitude. LJH685 inhibitor Although the method was discovered more than a decade ago, the quest to optimize SABRE and to establish a complete description in silico is ever ongoing. The simulation of SABRE is exacerbated by a complex interplay of chemical exchange and coherent polarization transfer. Here, we compare two different simulation approaches, Markov chain Monte Carlo (MC) simulations and a modification of the Liouville von Neumann equation with superoperators of chemical exchange (SO). We apply these methods to simulate the fate of truncated and full, three and four spin-½ systems in two different experiments continuous polarization at a constant or alternating B0 field. For all cases, MC and SO provided similar results, and previously reported experimental data were well reproduced. It appears that both methods are well suited to approach this matter, while SO was faster than MC by several orders of magnitude in the cases discussed.This study was conducted to investigate behavioral changes in laying hens (Hy-Line Brown) after transfer to a multi-tier system from the floor system and to examine their production performance. The hens were randomly divi