Teague Hinrichsen (mintwool43)

The review article is dedicated to a comprehensive study of the chemical bond formed during the immobilization of the proteolytic enzyme pancreatic trypsin in chitosan-based polymer matrixes and its derivatives. The main focus of the study is to describe the chemical bond that causes immobilization between chitosan based carriers and trypsin. Because the nature of the chemical bond between the carrier and trypsin is a key factor in determining the area of application of the conjugate. It has been found out that after the chemical nature of functional groups, their degree of ionization, the structure of the chemical cross-linking, the medium pH and ionic strength of chitosan are modified, the mechanism of trypsin immobilization is affected. As a result, the attraction enzyme to the matrix occurs due to polar covalent and hydrogen bonds, as well as electrostatic, hydrophobic, Van der Waals forces. The collected research works on the immobilization of trypsin on chitosan-based carriers have been systematized in the paper and shown schematically in subsystems according to the type of chemical interaction. It has been shown that the immobilization of trypsin on chitosan based matrixes occur more often due to the covalent and hydrogen bonds between the protein and the carrier.Ganoderma lucidium extract powder (GLEP) contains various polysaccharides which are well known for their antioxidant and anti-inflammatory actions. Probiotics (PB) are well-established for providing a plethora of health benefits. Hence, use of mushroom polysaccharides and probiotics as carriers to solidify liquisolid formulation is anticipated to function as functional excipients i.e. as adsorbent that may provide therapeutic benefits. Quercetin (QUR) has been used as model lipophilic drug in this study. QUR loaded liquisolid compacts (LSCs) were formulated using Tween 80 as solvent. These were further solidified using a combination of PB and GLEP as carriers. Aerosil-200 (A-200) was used as coating agent. The formulation exhibited very good flow characteristics. compound78c Dissolution rate of raw QUR was found to be less than 10% in 60 min while in case of QUR loaded LSCs, more than 90% drug release was observed within 5 min. Absence of crystalline peaks of QUR in the DSC and PXRD reports of LSCs and their porous appearance in SEM micrographs indicate that QUR was successfully incorporated in the LSCs. The developed formulation was found to be stable on storage under accelerated stability conditions.Pancreatic cancer is the fourth most lethal cancer type worldwide. Due to multiple levan applications including anticancer activities, studies related to levansucrase production are of interest. To our knowledge, levan effect on pancreatic cancer cells has not been tested previously. In this work, among eighteen bacterial honey isolates, Bacillus subtilis MT453867 showed the highest levan yield (33 g/L) and levansucrase production (8.31 U/mL). One-factor-at-a-time technique increased levansucrase activity by 60% when MgSO4 was eliminated. The addition of 60 g/L banana peels enhanced the enzyme activity (192 U/mL). Placket Burman design determined the media composition for maximum levan yield (54.8 g/L) and levansucrase production (505 U/mL). The identification of levan was confirmed by thin-layer chromatography, Fourier-Transform Infrared spectrometric analysis, 13C-nuclear-magnetic resonance, and 1H-nuclear-magnetic resonance. Both crude and dialyzed levan completely inhibited the pancreatic cancer cell line at 100 ppm with no cytotoxicity on the normal retinal cell line. The LD50 of crude levan was 4833 mg/kg body weight. Levan had strong antioxidant activity and significantly reduced the expression of CXCR4 and MCM7 genes in pancreatic cancer cells with significant DNA fragmentation. In conclusion, Bacillus subtilis MT453867 levan is a promising adjunct to pancreatic-anticancer agents with both anti-cancer and chemoprotective effects.The binding and interac